Расчеты при проектировании. Валы и оси

Валы и оси

Зубчатые колеса, шкивы, звездочки и другие вращающиеся детали машин устанавливают на валах или осях.

Вал предназначен для поддержания сидящих на нем деталей и для передачи вращающего момента. При работе вал испытывает изгиб и кручение, а в отдельных случаях - дополнительно растяжение или сжатие.

Ось - деталь, предназначенная только для поддержания сидящих на ней деталей. В отличие от вала ось не передает вращающего момента и, следовательно, не испытывает кручения. Оси могут быть неподвижными или вращаться вместе с насаженными на них деталями.

Материалы валов и осей

Материалы валов и осей должны быть прочными, хорошо обрабатываться и иметь высокий модуль упругости. Прямые валы и оси изготовляют преимущественно из углеродистых и легированных сталей.

Для валов и осей без термообработки применяют стали Ст5, Ст6; для валов с термообработкой - стали 45, 40Х. Быстроходные валы, работающие в подшипниках скольжения, изготовляют из сталей 20, 20Х, 12ХНЗА. Цапфы этих валов цементируют для повышения износостойкости.

Валы и оси обрабатывают на токарных станках с последующим шлифованием цапф и посадочных поверхностей.

Критерии работоспособности валов и осей

Валы и вращающиеся оси при работе испытывают циклически изменяющиеся напряжения. Основными критериями работоспособности являются усталостная прочность (выносливость) и жесткость. Усталостная прочность валов и осей оценивается коэффициентом запаса прочности, а жесткость - прогибом в местах посадок деталей и углами наклона или закручивания сечений.



Практикой установлено, что разрушение валов и осей быстроходных машин в большинстве случаев носит усталостный характер, поэтому основным является расчет на усталостную прочность.

Основными расчетными силовыми факторами являются крутящие Т и изгибающие М моменты. Влияние растягивающих и сжимающих сил, как правило, невелико и в большинстве случаев не учитывается.

Проектный расчет валов

Проектный расчет валов производится на статическую прочность для ориентировочного определения диаметров. В начале расчета известен только крутящий момент . Изгибающие моменты М возможно определить лишь после разработки конструкции вала, когда согласно чертежу выявится его длина. Кроме того, только после разработки конструкции определятся места концентрации напряжений: галтели, шпоночные канавки и т. п. Поэтому проектный расчет вала производится условно только на одно кручение. При этом расчете влияние изгиба, концентрации напряжений и характера нагрузки на прочность вала компенсируются понижением допускаемых напряжений на кручение .

При проектном расчете обычно определяют диаметр выходного конца вала, который в большинстве случаев испытывает лишь одно кручение. Промежуточный вал не имеет выходного конца, поэтому для него расчетом определяют диаметр под шестерней. Остальные диаметры вала назначаются при разработке конструкции с учетом технологии изготовления и сборки.

Диаметр расчетного сечения вала определяют по формуле, известной из курса сопротивления материалов:

, (4.116)

где Т - крутящий момент, возникающий в расчетном сечении вала и обычно численно равный передаваемому вращающему моменту; - допускаемое напряжение на кручение.

Для валов из сталей Ст5, Ст6, 45 принимают: при определении диаметра выходного конца МПа. При определении диаметра промежуточного вала под шестерней МПа.

Полученное значение диаметра округляют до ближайшего стандартного значения. Нормальные линейные размеры, мм: 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 28, 30, 32, 34, 36, 38, 40, 42, 45, 48, 50, 53, 56, 60, 63, 67, 71, 75, 80, 85, 90, 95, 100.

При проектировании редукторов диаметр выходного конца быстроходного вала часто принимают равным (или почти равным) диаметру вала электродвигателя, с которым он будет соединен муфтой.

Зубчатые колеса, шкивы, звездочки и другие вращающиеся детали машин устанавливают на валах или осях.

Вал предназначен для поддержания сидящих на нем деталей и для передачи вращающего момента. При работе вал испытывает изгиб и кручение, а в отдельных случаях  дополнительно растяжение или сжатие.

Ось  деталь, предназначенная только для поддержания сидящих на ней деталей. В отличие от вала ось не передает вращающего момента и, следовательно, не испытывает кручения. Оси могут быть неподвижными или вращаться вместе с насаженными на них деталями.

Материалы валов и осей

Материалы валов и осей должны быть прочными, хорошо обрабатываться и иметь высокий модуль упругости. Прямые валы и оси изготовляют преимущественно из углеродистых и легированных сталей.

Для валов и осей без термообработки применяют стали Ст5, Ст6; для валов с термообработкой  стали 45, 40Х. Быстроходные валы, работающие в подшипниках скольжения, изготовляют из сталей 20, 20Х, 12ХНЗА. Цапфы этих валов цементируют для повышения износостойкости.

Валы и оси обрабатывают на токарных станках с последующим шлифованием цапф и посадочных поверхностей.

Критерии работоспособности валов и осей

Валы и вращающиеся оси при работе испытывают циклически изменяющиеся напряжения. Основными критериями работоспособности являются усталостная прочность (выносливость) и жесткость. Усталостная прочность валов и осей оценивается коэффициентом запаса прочности, а жесткость  прогибом в местах посадок деталей и углами наклона или закручивания сечений.

Практикой установлено, что разрушение валов и осей быстроходных машин в большинстве случаев носит усталостный характер, поэтому основным является расчет на усталостную прочность.

Основными расчетными силовыми факторами являются крутящие Т и изгибающие М моменты. Влияние растягивающих и сжимающих сил, как правило, невелико и в большинстве случаев не учитывается.

Проектный расчет валов

Проектный расчет валов производится на статическую прочность для ориентировочного определения диаметров. В начале расчета известен только крутящий момент . Изгибающие моментыМ возможно определить лишь после разработки конструкции вала, когда согласно чертежу выявится его длина. Кроме того, только после разработки конструкции определятся места концентрации напряжений: галтели, шпоночные канавки и т. п. Поэтому проектный расчет вала производится условно только на одно кручение. При этом расчете влияние изгиба, концентрации напряжений и характера нагрузки на прочность вала компенсируются понижением допускаемых напряжений на кручение .

При проектном расчете обычно определяют диаметр выходного конца вала, который в большинстве случаев испытывает лишь одно кручение. Промежуточный вал не имеет выходного конца, поэтому для него расчетом определяют диаметр под шестерней. Остальные диаметры вала назначаются при разработке конструкции с учетом технологии изготовления и сборки.

Диаметр расчетного сечения вала определяют по формуле, известной из курса сопротивления материалов:


, (4.116)

где Т  крутящий момент, возникающий в расчетном сечении вала и обычно численно равный передаваемому вращающему моменту;

 допускаемое напряжение на кручение.

Для валов из сталей Ст5, Ст6, 45 принимают: при определении диаметра выходного конца

МПа. При определении диаметра промежуточного вала под шестерней

МПа.

Полученное значение диаметра округляют до ближайшего стандартного значения. Нормальные линейные размеры, мм: 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 28, 30, 32, 34, 36, 38, 40, 42, 45, 48, 50, 53, 56, 60, 63, 67, 71, 75, 80, 85, 90, 95, 100.

При проектировании редукторов диаметр выходного конца быстроходного вала часто принимают равным (или почти равным) диаметру вала электродвигателя, с которым он будет соединен муфтой.

Cтраница 2


Проектный расчет делают, если требуется сконструировать новый аппарат или выбрать один из аппаратов, выпускаемых промышленностью. При этом должны быть известны его тепловая мощность, расходы и начальные параметры (температура, давление, влагосодержание и др.) или расходы, начальные и конечные параметры теплоносителей, их теп-лофизические свойства, условия эксплуатации теплообменника и прочие сведения, необходимые для выбора его типа и конструкции. Расчету аппарата, как правило, предшествует расчет технологической схемы, в которой он используется.  

Проектные расчеты основаны на ряде допущений и выполняются как предварительные.  

Проектный расчет является основным видом расчета при проектировании.  

Проектные расчеты применяются для определения исходных данных для установления размеров узлов и деталей несложной конфигурации, причем эти расчеты ведутся по упрощенной методике. Основные этапы проведения проектного расчета: составляют упрощенную расчетную схему сил и моментов; определяют расчетом их численные значения; выбирают материалы по механическим и технологическим свойствам с учетом их стоимости и дефицитности; определяют размеры деталей и согласовывают их с данными стандартов; вырисовывают детали в сборе и проверяют их на соответствие выбранной конструкции. Если необходимо, конфигурацию детали меняют и расчет повторяют.  

Проектные расчеты позволяют решать исходя из заданных технологических, кинематических, прочностных и других характеристик те задачи расчета и конструирования, которые нельзя не решать в процессе создания машины.  

Проектный расчет на усталостную прочность может быть выполнен лишь весьма ориентировочно, так как обоснованный выбор (по приведенным в технической литературе экспериментальным данным) коэффициентов ka и рма (& т и (Змт), входящих в расчетные формулы, возможен лишь на основе рабочего чертежа рассчитываемой детали.  

Проектировочный расчет валов проводят на статическую прочность с целью ориентировочного определения диаметров ступеней вала. В начале расчета известен только вращающий момент Т. Изгибающие момен­ты М можно определить лишь после разработки конструкции вала, \ когда согласно общей компоновке вьювляют его длину и места при­ложения действующих нагрузок.

Поэтому проектировочный расчет вала выполняют условцо только на кру­чение, а влияние изгиба, концентрации напряжений и характера нагрузки компенсируют понижением допускаемого напряжения [τ] к на кручение.

При проектировочном расчете валов редуктора обычно определяют диаметры концевых сечений входного и выходного валов, а для промежу­точного вала - диаметр в месте посадки колеса. Диаметры других уча­стков вила назначают при разработке его конструкции с учетом назна­чения, технологии изготовления и сборки.

Диаметр d, мм, расчетного сечения вала вычисляют по формуле, известной из курса сопротивления материалов:


где М к = Т- крутящий момент, действующий в расчетном сечении, вала, Н-м; [τ] к - допускаемое напряжение на кручение, Н/мм 2 .

Для валов из сталей марок Ст5, Стб, 45 принимают: при опреде­лении диаметров концевых участков вала [τ] к = 20...28 Н/мм 2 ; диамет­ров вала в месте посадки колес [τ] к =14...20 Н/мм 2 .


Полученный диаметр вала округляют до ближайшего значения из ряда R40 нормальных линейных размеров, мм: 22, 24, 25, 26, 28, 30, 32, 34, 36, 38, 40, 42, 45, 48, 50, 53, 56, 60, 63, 67, 71, 75, 80, 85, 90, 95, 100, 105, ПО, 120, 125, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 240, 250, 260, 280 и др. Большие (меньшие) значения размеров получают умножением (делением) приведенных размеров ряда на 10 или 100.

При проектировании редукторов диаметр d конца входного вала можно принимать равным d= (0,8...1)d э, где d э - диаметр вала электродвига­теля, с которым вал редуктора соединяется муфтой.

После подбора подшипников, расчета соединений, участвующих в передаче вращающего момента, принятия различных конструктив­ных элементов вала, связанных с фиксацией и регулировкой установ­ленных на нем деталей, назначения вида механической обработки и качества поверхностей отдельных участков вала выполняют эскизную разработку конструкции вала, уточняя его форму и размеры.

Пример 27.1. Выполнить проектировочный расчет тихоходного вала одноступенчато­го редуктора привода ленточного конвейера (см. рис. 9.2 и 19.3). Вращающий момент на валу T=321 Н*М. Ширина венца зубчатого колеса b 2 = 42 мм.

Решение. 1. Материал вала. Принимаем сталь марки 45. Учитывая, что выходной конец вала помимо кручения испытывает изгиб от сил, действующих со стороны цепной пе­редачи (см. рис. 9.2), принимаем [τ] к =25 Н/мм 2 .

2. Диаметр выходного конца вала. При М к = Т по формуле (27.1)

Принимаем стандартное значение d=40 мм (см. § 27.4).

3. Эскизная разработка конструкции вала и оценка его размеров по чертежу
(см. рис. 27.8, а).

Диаметр d=40 мм вала в месте установки звездочки получен расчетом. Диаметры в местах расположения подшипников принимаем d П = 45 мм. Диаметр вала под зубчатым колесом назначаем d к =50 мм (колесо должно свободно проходить через посадочное место подшипника). Радиусы галтелей принимаем r= 1,5 мм (см. рис. 27.4, б). Конструктивно назначаем l , = 50 мм, l 2 = l 3 = 40 мм.

Проверочный расчет валов

Проверочный расчет валов проводят на сопротивление усталости и на жесткость. Его выполняют после полного конструктивного оформления вала на основе проектировочного расчета.

В отдельных случаях валы рассчитывают на колебания. В настоящем курсе расчет на колебания не рассматривается.

Проверочный расчет вала выполняют по его расчетной схеме. При со­ставлении расчетной схемы валы рассматривают как прямые брусья, лежащие на жестких шарнирных опорах.

При выборе типа опоры полагают, что деформации валов малы, и если подшипник допускает хотя бы небольшой наклон или пере­мещение цапфы (например, в пределах зазоров между телами качения и кольцами подшипника качения), то его считают шарнирно-неподвижной


Рис. 27.6. Расчетные схемы опор

или шарнирно-подвижной опорой. Подшипники качения или скольже­ния, воспринимающие одновременно радиальные и осевые силы, рас­сматривают как шарнирно-неподвижные опоры (рис. 27.6, а), а подшип­ники, воспринимающие только радиальные силы,- как шарнирно-под~ важные (рис. 27.6, б).

На расчетной схеме центр шарнирной опоры располагают на сере­дине ширины радиального подшипника качения (рис. 27.6, а) или со смещением а от торца подшипника для радиально-упорных подшип­ников (рис. 27.6, в). Для конических роликовых подшипников a=0,5, где D, d, Т, е - параметры подшипников (см. спра­вочную литературу).

У валов, вращающихся в подшипниках скольжения (рис. 27.6, б), давление по длине l подшипника вследствие деформации вала распре­деляется неравномерно. Поэтому центр шарнира условной опоры распо­лагают со смещением (0,25...0,3)l от стороны нагруженного пролета вала.

Основными силами, действующими на валы, являются силы от пере­дач, распределенные по длине ступиц. На расчетных схемах эти силы, а также вращающие моменты изображают как сосредоточенные, прилоч женные в серединах ступиц (рис. 27.8).

Силы трения в опорах и силы тяжести валов и установленных, на них деталей не учитывают (за исключением маховиков).

После выполнения проектировочного расчета, когда диаметры входных (выходных) концов валов будут известны, подбирают муфты (см. гл. 30), Из-за несоосности соединяемых валов (вследствие изнашивания, по­грешностей изготовления и монтажа) большинство муфт дополнитель­но нагружают консольные участки валов радиальной силой F u .

Так как направление консольной силы F M неизвестно, то его принимав ют совпадающим с направлением действия окружной силы F t в передаче (худший случай). Расстояние от точки приложения силы F u до середи­ны ближайшей опоры назначают конструктивно (см. ).

Пример перехода от принятой конструкции вала к его расчетной схеме приведен на рис. 27.8.

Расчет на сопротивление усталости выполняют как проверочный. Он заключается в определении расчетных коэффициентов запаса прочно­сти в предположительно опасных сечениях, предварительно намечен­ных в соответствии с эпюрами моментов и расположением зон кон­центрации напряжений.

При расчете принимают, что напряжения изгиба изменяются по симметричному циклу, а напряжения кручения - по отнулевому цик­лу (см. рис. 2.1). Выбор отнулевого цикла для напряжений кручения основан на том, что валы передают переменные по значению, но постоянные по направлению вращающие моменты.

Проверку на сопротивление усталости производят по коэффици­енту s запаса прочности [см. формулу (2.12)].

Согласно рис. 2.1:

амплитуда симметричного цикла напряжений при изгибе вала


амплитуда отнулевого цикла напряжении при кручении вала


где - результирующий изгибающий момент (М B и М г - изгибающие моменты в вертикальной и горизонтальной плоскостях);

М к - крутящий момент;

W и и W K - моменты сопротивления сечения вала изгибу и круче­нию:

Проверочный расчет на сопротивление усталости ведут по макси­мальной длительно действующей нагрузке без учета кратковременных пиковых нагрузок, число циклов нагружения которых невелико и не влияет на сопротивление усталости.

Минимально допустимое значение коэффициента запаса прочно­сти [s] = 1,5...2,5 в зависимости от ответственности конструкции и сте­пени достоверности определения нагрузок.

Если в результате расчета получают s<[s], а увеличение сечения вала невозможно или нецелесообразно, то наиболее эффективным способом повышения сопротивления усталости является применение упрочняющей обработки (см. § 2.4).

Расчет валов на сопротивление усталости ведут в последовательно­сти, изложенной в решении примера 27.2.

Расчет валов на жесткость выполняют в тех случаях, когда их дефор­мации (линейные или угловые) существенно влияют на работу сопряжен­ных с валом деталей.

Так, наклон упругой линии 1 вала под зубчатым колесом от про­гиба (рис. 27.7) вызывает перекос колес, концентрацию нагрузки по



длине зубьев, повышенный местный износ или даже излом, а угол
наклона цапф - защемление тел качения в подшипниках, повышен-?
ное сопротивление вращению и нагрев опоры.

Различают изгибную и крутильную жесткость вала.

Изгибную жесткость валов оценивают прогибом f и углом Θ наклони сечений, которые определяют методами сопротивления материалов. Требуемая изгибная жесткость обеспечивается при выполнении усло­вий:f < [f ] и Θ < [Θ ].

Значения допускаемых прогибов [f ] и углов наклона [Θ ] зависят от назначения вала или оси. Так, допускаемый прогиб червяка [f ] < 0,008/я, где т - модуль зацепления; допускаемый угол наклона сечения вала под зубчатым колесом [Θ ]<2"; угол наклона цапф при установке радиальных шарикоподшипников [Θ ]< 1,6", конических роликовых [Θ ]<О,4".

Крутильную жесткость валов оценивают углом закручивания на единицу длины вала (см. курс «Сопротивление материалов»). Для мжь гих валов передач крутильная жесткость не имеет существенного зна­чения и такой расчет для них не проводят.


Расчет осей

Проектировочный расчет. Оси работают как поддерживающие дета­ли и поэтому нагружены только изгибающими нагрузками. Действие растягивающих и сжимающих сил не учитывают. Проектировочный расчет осей на статическую прочность выполняют аналогично расчету балок с шарнирными опорами обычными методами сопротивления материалов, задаваясь при этом длинами участков осей в зависимости от конструкции узла.

Расчет неподвижных осей ведут в предположении изменения напря­жений изгиба по отнулевому циклу - самому неблагоприятному из всех знакопостоянных циклов. Для осей, изготовленных из среднеуглероди-стых сталей марок Ст5, Стб, 45 и др., допускаемое напряжение изгиба [σ 0 ] и = 100...160 Н/мм 2 . Меньшие значения рекомендуются при значи­тельных концентрациях напряжений.

Напряжения во вращающихся осях изменяются по симметричному циклу, для них принимают [σ -1 ] и = (0,5...0,6)[σ 0 ] и. Если ось в расчетном сечении имеет шпоночную канавку, то полученный диаметр увеличи­вают на 10% и округляют до ближайшего большего стандартного зна­чения (см. § 27.4).

Проверочный расчет осей на сопротивление усталости и изгибную жесткость ведут аналогично расчету валов при М к = 0.




1. Валы и оси следует конструировать по возможности гладкими с минимальным числом ступеней (см. рис. 27.8 и 27.9). В этом случае существенно сокращается расход материала на изготовление вала, что особенно важно в условиях крупносерийного производства. В индиви­дуальном и мелкосерийном производстве применяют валы с бортами для упора колес (рис. 27.2).

2. Каждая насаживаемая на вал или ось деталь должна проходить до своей посадочной поверхности свободно во избежание повреждения других поверхностей (см. рис. 7,6 и 27.8, а). Рекомендуют принимать такую разность диаметров ступеней вала, чтобы при сборке можно было насадить деталь, не вынимая шпонку, установленную в пазу ступени меньшего диаметра.

3. Торцы валов и осей и их уступы выполняют с фасками для удобства установки деталей и соблюдения норм охраны труда (см. рис. 27.2).


4. Втяжелонагруженных валах или осях для снижения концентра­ции напряжений в местах посадочных поверхностей рекомендуют пе­репады ступеней выполнять минимальными с применением галтелей переменного радиуса (см. рис. 27.4, в).

5. При посадках с натягом трудно совместить шпоночный паз в сту­пице со шпонкой вала. Для облегчения сборки на посадочной повер­хности вала предусматривают небольшой направляющий цилиндри­ческий участок с полем допуска d9 (см. рис. 27.2).

6. Для уменьшения номенклатуры резцов и фрез радиусы галтелей, углы фасок, ширину пазов на одном валу или оси рекомендуют вы­полнять одинаковыми. Если на валу несколько шпоночных пазов, то их располагают на одной образующей (см. рис. 27.2).

7. Для увеличения изгибной жесткости валов и осей рекомендуют детали на них располагать возможно ближе к опорам.

8. При разработке конструкции вала или оси надо иметь в виду, что резкие изменения их сечений (резьбы под установочные гайки, шпоночные пазы, канавки, поперечные сквозные отверстия под штифты и отверстия под установочные винты и др.) вызывают концентрацию напряжений, уменьшая сопротивление усталости.

Контрольные вопросы

1. Какая разница между валом и осью и какие деформации испытывают вал и ось при работе?

2. Что называют цапфой, шипом, шейкой и пятой?

3. Каковы основные критерии работоспособности валов и осей и какими парамет­рами их оценивают?

4. Почему валы рассчитывают в два этапа: первый - проектировочный расчет, вто­рой - проверочный расчет?

5. Какова цель проектировочного расчета, какой обычно диаметр вала определяют и почему?

6. Какова цель проверочного расчета? Какой параметр при этом определяют?

7. Каковы конструктивные и технологические способы повышения сопротивления усталости валов?