Движение задано формулой найти мгновенную скорость при. Средняя скорость перемещения

К примеру, автомобиль, который трогается с места, движется ускоренно, так как наращивает скорость движения. В точке начала движения скорость автомобиля равняется нулю. Начав движение, автомобиль разгоняется до некоторой скорости. При необходимости затормозить, автомобиль не сможет остановиться мгновенно, а за какое-то время. То есть скорость автомобиля будет стремиться к нулю - автомобиль начнет двигаться замедленно до тех пор, пока не остановится полностью. Но физика не имеет термина «замедление». Если тело двигается, уменьшая скорость, этот процесс тоже называется ускорением , но со знаком «-».

Средним ускорением называется отношение изменения скорости к промежутку времени, за который это изменении произошло. Вычисляют среднее ускорение при помощи формулы:

где - это . Направление вектора ускорения такое же, как у направления изменения скорости Δ = - 0

где 0 является начальной скоростью. В момент времени t 1 (см. рис. ниже) у тела 0 . В момент времени t 2 тело имеет скорость . Исходя из правила вычитания векторов, определим вектор изменения скорости Δ = - 0 . Отсюда вычисляем ускорение:

.

В системе СИ единицей ускорения называется 1 метр в секунду за секунду (либо метр на секунду в квадрате):

.

Метр на секунду в квадрате - это ускорение прямолинейно движущейся точки, при котором за 1 с скорость этой точки растет на 1 м/с. Другими словами, ускорение определяет степень изменения скорости тела за 1 с. К примеру, если ускорение составляет 5 м/с 2 , значит, скорость тела ежесекундно растет на 5 м/с.

Мгновенное ускорение тела (материальной точки) в данный момент времени - это физическая величина , которая равна пределу, к которому стремится среднее ускорение при стремлении промежутка времени к 0. Другими словами - это ускорение, развиваемое телом за очень маленький отрезок времени:

.

Ускорение имеет такое же направление, как и изменение скорости Δ в крайне маленьких промежутках времени, за которые скорость изменяется. Вектор ускорения можно задать при помощи проекций на соответствующие оси координат в заданной системе отсчета (проекциями а Х, a Y , a Z).

При ускоренном прямолинейном движении скорость тела увеличивается по модулю, т.е. v 2 > v 1 , а вектор ускорения имеет такое же направление, как и у вектора скорости 2 .

Если скорость тела по модулю уменьшается (v 2 < v 1), значит, у вектора ускорения направление противоположно направлению вектора скорости 2 . Другими словами, в таком случае наблюдаем замедление движения (ускорение отрицательно, а < 0). На рисунке ниже изображено направление векторов ускорения при прямолинейном движении тела для случая ускорения и замедления.

Если происходит движение по криволинейной траектории, то изменяется модуль и направление скорости. Значит, вектор ускорения изображают в виде 2х составляющих.

Тангенциальным (касательным) ускорением называют ту составляющую вектора ускорения, которая направлена по касательной к траектории в данной точке траектории движения. Тангенциальное ускорение описывает степень изменения скорости по модулю при совершении криволинейного движения.


У вектора тангенциального ускорения τ (см. рис. выше) направление такое же, как и у линейной скорости либо противоположно ему. Т.е. вектор тангенциального ускорения находится в одной оси с касательной окружности, являющейся траекторией движения тела.

Мы сделали попытку свести неравномерное движение к равномерному и для этого ввели среднюю скорость движения. Но это нам не помогло: зная среднюю скорость, нельзя решать самую главную задачу механики - определять положение тела в любой момент времени. Можно ли каким-нибудь другим способом свести неравномерное движение к равномерному?

Этого, оказывается, сделать нельзя, потому что механическое движение - это процесс непрерывный. Непрерывность движения состоит в том, что если, например, тело (или точка), двигаясь прямолинейно с возрастающей скоростью, перешло из точки А в точку В, то оно непременно должно побывать во всех промежуточных точках, лежащих между А и В, без всяких пропусков. Но это еще не все. Предположим, что, подходя к точке А, тело двигалось равномерно со скоростью 5 м/сек, а после прохождения точки В оно двигалось тоже равномерно, но со скоростью 30 м/сек. При этом на прохождение участка АВ тело потратило 15 сек. Следовательно, на отрезке АВ скорость тела за 15 сек изменилась на 25 м/сек. Но так же как тело при своем движении не могло миновать ни одну из точек на его пути, его скорость должна была принять все значения скорости между 5 и 30 м/сек. Тоже без всяких пропусков! В этом и состоит непрерывность механического движения: ни координаты тела, ни его скорость не могут изменяться скачками. Отсюда можно сделать очень важный вывод. Различных значений скорости в интервале от 5 до 30 м/сек имеется бесчисленное множество (в математике говорят, бесконечно много значений). Но между точками А и В имеется и бесчисленное множество (бесконечно много!) точек, а 15-секундный интервал времени, в течение которого тело переместилось из точки А в точку В, состоит из бесчисленного множества промежутков времени (время тоже течет без скачков!).

Следовательно, в каждой точке траектории движения и в каждый момент времени тело обладало определенной скоростью.

Скорость, которую имеет тело в данный момент времени и в данной точке траектории, называют мгновенной скоростью.

При равномерном прямолинейном движении скорость тела определяется отношением его перемещения к промежутку времени, за который совершено это перемещение. Что же означает скорость в данной точке или в данный момент времени?

Допустим, что некоторое тело (как всегда, мы в действительности имеем в виду какую-то определенную точку этого тела) движется прямолинейно, но не равномерно. Как вычислить его мгновенную скорость в некоторой точке А его траектории? Выделим небольшом участок на этой траектории, включающий точку А (рис. 38). Малое перемещение тела на этом участке обозначим через

а малый промежуток времени, в течение которого оно совершено, через Разделив на мы получим среднюю скорость на этом участке: ведь скорость изменяется непрерывно и в разных местах участка 1 она различна.

Уменьшим теперь длину участка 1. Выберем участок 2 (см. рис. 38), тоже включающий в себя точку А. На этом меньшем участке перемещение равно и проходит его тело за промежуток времени Ясно, что на участке 2 скорость тела успевает измениться на меньшую величину. Но отношение дает нам и для этого меньшего участка все же среднюю скорость. Еще меньше изменение скорости на протяжении участка 3 (также включающего в себя точку А), меньшего, чем участки 1 и 2, хотя, разделив перемещение на промежуток времени мы опять получим среднюю скорость на этом малом участке траектории. Будем постепенно уменьшать длину участка, а вместе с ним и промежуток времени, за который тело проходит этот участок. В конце концов мы стянем участок траектории, прилегающей к точке А, всамую точку А, а промежуток времени - в момент времени. Тогда-то средняя скорость и станет мгновенной скоростью, потому что на достаточно малом участке изменение скорости будет настолько мало, что его можно не учитывать, значит, можно считать, что скорость не изменяется.

Мгновенная скорость, или скорость в данной точке, равна отношению достаточно малого перемещения на малом участке траектории, прилегающей к этой точке, к малому промежутку времени, в течение которого совершается это перемещение.

Понятно, что скорость равномерного прямолинейного движения - это одновременно его мгновенная и средняя скорость.

Мгновенная скорость - величина векторная. Ее направленна совпадает с направлением перемещения (движения) в данной точка Прием, к которому мы прибегли, чтобы пояснить смысл

мгновенной скорости, состоит, таким образом, в следующем. Участок траектории и время, в течение которого он проходится, мы мысленно постепенно уменьшаем до тех пор, пока участок уже нельзя отличить от точки, промежуток времени - от момента времени, а неравномерное движение - от равномерного. Таким приемом всегда пользуются, когда изучают явления, в которых играют роль какие-нибудь непрерывно изменяющиеся величины.

Нам остается теперь выяснить, что необходимо знать для нахождения мгновенной скорости тела в любой точке траектории и в любой момент времени.

Скорость в физике означает быстроту перемещения какого-либо объекта в пространстве. Эта величина бывает разной: линейной, угловой, средней, космической и даже сверхсветовой. В число всех существующих разновидностей входит также и мгновенная скорость. Что это за величина, какова ее формула и какие действия необходимы для ее расчета - об этом как раз и пойдет речь в нашей статье.

Мгновенная скорость: сущность и понятие

О том, как определить быстроту перемещения объекта по прямой, известно даже ученику начальных классов: достаточно пройденное расстояние разделить на время, которое было затрачено на такое перемещение. Однако стоит помнить, что результат, полученный таким способом, позволяет судить о Если объект движется неравномерно, то на определенных участках его пути быстрота перемещения может заметно варьироваться. Поэтому порой требуется такая величина как мгновенная скорость. Она позволяет судить о быстроте перемещения материальной точки в любой момент движения.

Мгновенная скорость: формула расчета

Данный параметр равен пределу (обозначается limit, сокращенно lim) отношения перемещения (разнице координат) к промежутку времени, за которое это изменение произошло, при условии, что этот промежуток времени стремится достичь нуля. Это определение можно записать в виде следующей формулы:

v = Δs/Δt при Δt → 0 либо так v = lim Δt→0 (Δs/Δt)

Отметим, что мгновенная скорость есть Если движение происходит по прямой линии, то она меняется лишь по величине, а направление остается постоянным. В противном случае вектор скорости мгновенной направлен по касательной по отношению к траектории перемещения в каждой рассматриваемой точке. Какой смысл несет данный показатель? Мгновенная скорость позволяет выяснить, какое перемещение осуществит объект за единицу времени, если с рассматриваемого момента он движется равномерно и прямолинейно.

В случае никаких сложностей нет: нужно просто найти отношение расстояния к времени, за которое оно было объектом преодолено. В этом случае средняя и мгновенная скорость тела равны. Если же движение происходит непостоянно, то в этом случае следует узнать величину ускорения и определять мгновенную скорость в каждый определенный момент времени. При вертикальном перемещении следует учитывать влияние Мгновенную скорость автомобиля можно определить с помощью радара или спидометра. Следует иметь в виду, что перемещение в некоторых участках пути может принимать отрицательное значение.

Для того чтобы найти ускорение, можно воспользоваться акселерометром либо составить функцию движения и воспользоваться формулой v=v0+a.t. Если перемещение начинается из состояния покоя, то v0 = 0. При расчетах нужно учитывать тот факт, что при торможении тела (уменьшении скорости) величина ускорения будет со знаком "минус". Если объект совершает мгновенная быстрота его перемещения рассчитывается по формуле v= g.t. В этом случае начальная скорость также равна 0.

В общих целях нахождение скорости объекта (v) – простая задача: нужно разделить перемещение (s) в течение определенного времени (s) на это время (t), то есть воспользоваться формулой v = s/t. Однако таким способом получают среднюю скорость тела. Используя некоторые вычисления, можно найти скорость тела в любой точке пути. Такая скорость называется мгновенной скоростью и вычисляется по формуле v = (ds)/(dt) , то есть представляет собой производную от формулы для вычисления средней скорости тела. .

Шаги

Часть 1

Вычисление мгновенной скорости
  1. Для вычисления мгновенной скорости необходимо знать уравнение, описывающее перемещение тела (его позицию в определенный момент времени), то есть такое уравнение, на одной стороне которого находится s (перемещение тела), а на другой стороне – члены с переменной t (время). Например:

    s = -1.5t 2 + 10t + 4

    • В этом уравнении: Перемещение = s . Перемещение – пройденный объектом путь. Например, если тело переместилось на 10 м вперед и на 7 м назад, то общее перемещение тела равно 10 - 7 = 3 м (а на 10 + 7 = 17 м). Время = t . Обычно измеряется в секундах.
  2. Чтобы найти мгновенную скорость тела, чьи перемещения описываются приведенным выше уравнением, вы должны вычислить производную этого уравнения. Производная – это уравнение, позволяющее вычислить наклон графика в любой точке (в любой момент времени). Чтобы найти производную, продифференцируйте функцию следующим образом: если y = a*x n , то производная = a*n*x n-1 . Это правило применяется к каждому члену многочлена.

    • Другими словами, производная каждого члена с переменной t равна произведению множителя (стоящему перед переменной) и степени переменной, умноженному на переменную в степени, равную исходной степени минус 1. Свободный член (член без переменной, то есть число) исчезает, потому что умножается на 0. В нашем примере:

      s = -1.5t 2 + 10t + 4
      (2)-1.5t (2-1) + (1)10t 1 - 1 + (0)4t 0
      -3t 1 + 10t 0
      -3t + 10

  3. Замените "s" на "ds/dt", чтобы показать, что новое уравнение – это производная от исходного уравнения (то есть производная s от t). Производная – это наклон графика в определенной точке (в определенный момент времени). Например, чтобы найти наклон линии, описываемой функцией s = -1.5t 2 + 10t + 4 при t = 5, просто подставьте 5 в уравнение производной.

    • В нашем примере уравнение производной должно выглядеть следующим образом:

      ds/dt = -3t + 10

  4. В уравнение производной подставьте соответствующее значение t, чтобы найти мгновенную скорость в определенный момент времени. Например, если вы хотите найти мгновенную скорость при t = 5, просто подставьте 5 (вместо t) в уравнение производной ds/dt = -3 + 10. Затем решите уравнение:

    ds/dt = -3t + 10
    ds/dt = -3(5) + 10
    ds/dt = -15 + 10 = -5 м/с

    • Обратите внимание на единицу измерения мгновенной скорости: м/с. Так как нам дано значение перемещения в метрах, а время – в секундах, и скорость равна отношению перемещения ко времени, то единица измерения м/с – правильная.

    Часть 2

    Графическая оценка мгновенной скорости
    1. Постройте график перемещения тела. В предыдущей главе вы вычисляли мгновенную скорость по формуле (уравнению производной, позволяющему найти наклон графика в определенной точке). Построив график перемещения тела, вы можете найти его наклон в любой точке, а следовательно определить мгновенную скорость в определенный момент времени.

      • По оси Y откладывайте перемещение, а по оси Х - время. Координаты точек (х,у) получите через подстановку различных значений t в исходное уравнение перемещение и вычисления соответствующих значений s.
      • График может опускаться ниже оси Х. Если график перемещения тела опускается ниже оси Х, то это значит, что тело движется в обратном направлении от точки начала движения. Как правило, график не будет распространяться за ось Y (отрицательные значения х) – мы не измеряем скорости объектов, движущихся назад во времени!
    2. Выберите на графике (кривой) точку Р и близкую к ней точку Q. Чтобы найти наклон графика в точке Р, используем понятие предела. Предел – состояние, при котором величина секущей, проведенной через 2 точки P и Q, лежащих на кривой, стремится к нулю.

      • Например, рассмотрим точки Р(1,3) и Q(4,7) и вычислим мгновенную скорость в точке Р.
    3. Найдите наклон отрезка РQ. Наклон отрезка РQ равен отношению разницы значений координат «у» точек P и Q к разнице значений координат «х» точек P и Q. Другими словами H = (y Q - y P)/(x Q - x P), где H – наклон отрезка PQ. В нашем примере наклон отрезка PQ равен:

      H = (y Q - y P)/(x Q - x P)
      H = (7 - 3)/(4 - 1)
      H = (4)/(3) = 1.33

    4. Повторите процесс несколько раз, приближая точку Q к точке Р. Чем меньше расстояние между двумя точками, тем ближе значение наклона полученных отрезков к наклону графика в точке Р. В нашем примере проделаем вычисления для точки Q с координатами (2,4.8), (1.5,3.95) и (1.25,3.49) (координаты точки Р остаются прежними):

      Q = (2,4.8): H = (4.8 - 3)/(2 - 1)
      H = (1.8)/(1) = 1.8

      Q = (1.5,3.95): H = (3.95 - 3)/(1.5 - 1)
      H = (.95)/(.5) = 1.9

      Q = (1.25,3.49): H = (3.49 - 3)/(1.25 - 1)
      H = (.49)/(.25) = 1.96

    5. Чем меньше расстояние между точками Р и Q, тем ближе значение Н к наклону графика в точке Р. При предельно малом расстоянии между точками Р и Q, значение Н будет равно наклону графика в точке Р. Так как мы не можем измерить или вычислить предельно малое расстояние между двумя точками, графический способ дает оценочное значение наклона графика в точке Р.

      • В нашем примере при приближении Q к P мы получили следующие значения Н: 1.8; 1.9 и 1.96. Так как эти числа стремятся к 2, то можно сказать, что наклон графика в точке Р равен 2.
      • Помните, что наклон графика в данной точке равен производной функции (по которой построен этот график) в этой точке. График отображает перемещение тела с течением времени и, как отмечалось в предыдущем разделе, мгновенная скорость тела равна производной от уравнения перемещения этого тела. Таким образом, можно заявить, что при t = 2 мгновенная скорость равна 2 м/с (это оценочное значение).

    Часть 3

    Примеры
    1. Вычислите мгновенную скорость при t = 4, если перемещение тела описывается уравнением s = 5t 3 - 3t 2 + 2t + 9. Этот пример похож на задачу из первого раздела с той лишь разницей, что здесь дано уравнение третьего порядка (а не второго).

      • Сначала вычислим производную этого уравнения:

        s = 5t 3 - 3t 2 + 2t + 9
        s = (3)5t (3 - 1) - (2)3t (2 - 1) + (1)2t (1 - 1) + (0)9t 0 - 1
        15t (2) - 6t (1) + 2t (0)
        15t (2) - 6t + 2

        t = 1.01: s = 4(1.01) 2 - (1.01)
        4(1.0201) - 1.01 = 4.0804 - 1.01 = 3.0704, so Q = (1.01,3.0704)

      • Теперь вычислим H:

        Q = (2,14): H = (14 - 3)/(2 - 1)
        H = (11)/(1) = 11

        Q = (1.5,7.5): H = (7.5 - 3)/(1.5 - 1)
        H = (4.5)/(.5) = 9

        Q = (1.1,3.74): H = (3.74 - 3)/(1.1 - 1)
        H = (.74)/(.1) = 7.3

        Q = (1.01,3.0704): H = (3.0704 - 3)/(1.01 - 1)
        H = (.0704)/(.01) = 7.04

      • Так как полученные значения H стремятся к 7, то можно сказать, что мгновенная скорость тела в точке (1,3) равна 7 м/с (оценочное значение).
    • Чтобы найти ускорение (изменение скорости с течением времени), используйте метод в части первой, чтобы получить производную функции перемещения. Затем возьмите еще раз производную от полученной производной. Это даст вам уравнение для нахождения ускорения в данный момент времени - все, что вам нужно сделать, это подставить значение для времени.
    • Уравнение, описывающее зависимость у (перемещение) от х (время), может быть очень простым, например: у = 6x + 3. В этом случае наклон является постоянным и не надо брать производную, чтобы его найти. Согласно теории линейных графиков, их наклон равен коэффициенту при переменной х, то есть в нашем примере =6.
    • Перемещение подобно расстоянию, но оно имеет определенное направление, что делает его векторной величиной. Перемещение может быть отрицательным, в то время как расстояние будет только положительным.

I .Введение

Мгновенная скорость - предел средней скорости за бесконечно малый промежуток времени.

Средняя скорость потока - величина, полученная делением расхода воды, протекающей через сечение, нормальное к направлению течения потока, на площадь его сечения.

Полезно отличать понятие средней скорости перемещения от понятия средней скорости пути, равной отношению пройденного точкой пути ко времени, за которое этот путь был пройден. В отличие от скорости перемещения, средняя скорость пути - скаляр.

Когда говорят о средней скорости, для различения, скорость согласно выше приведённому определению называют мгновенной скоростью. Так, хотя мгновенная скорость бегуна, кружащего по стадиону, в каждый момент времени отлична от нуля, его средняя скорость (перемещения) от старта до финиша оказывается равной нулю, если точки старта и финиша совпадают. Заметим, что при этом, средняя путевая скорость остаётся отличной от нуля.

II . Отличие мгновенной скорости от средней.

Я напомню, что для изучения научного метода нам нужны хорошие и легко проверяемые примеры. Понять научный метод, прямо в процессе его применения к какой-то нужной нам на практике прикладной задаче, будет трудно. По этой причине мы и изучаем научный метод на примере физических задач.

Впоследствии мы увидим, что математические модели, имеющие физически ясный смысл скорости, пути и времени, подходят для описания любых взаимосвязанных изменяющихся величин. И если применение научного метода в какой-то прикладной области должно привести к конкретным результатам в виде чисел, а не к абстрактным предположениям, то обойтись без этих стандартных математических моделей, которые, в частности, связывают скорость, путь и время, невозможно.

Благодаря тому, что мы уже узнали про измерение физических величин и аппроксимацию их изменений, понимание средней скорости не вызовет у нас совсем никаких трудностей.

Рассмотрим тот же график пути, на котором мы изучали среднюю скорость.

На этом графике, путь S(В) равен 6 метрам и тело затрачивает на это время ОВ=15 секунд.

Предположим, что это двигался огромный железнодорожный состав длиной в километр, а мы наблюдали это движение издалека, смотря перпендикулярно этому движению.

С большого удаления нам было бы трудно зарегистрировать даже сам факт движения, если бы пройденный путь был, скажем, размером в 1 миллиметр, не то что измерить его точно. Пусть мы находится так далеко, что пройденный при этом движении путь, который мы еще можем заметить, равен одному метру.

Мы всегда на практике можем сделать таким образом: взять длинный и прямой участок пути на ровной местности, поместить на него состав и отойти так далеко, что вбитые через расстояние 1 метр колышки будут нам казаться расположенными очень близко друг от друга.

Я веду к тому, что расстояние в один метр для состава в один километр для данной задачи будет являться физически малым интервалом, подробности движения на расстоянии меньше метра мы даже и не увидим.

Затем, по секундомеру, мы можем отметить моменты времени, когда состав при этом движении пересекает каждый колышек и занести эти результаты в таблицу соответствия пути и времени. На нашем графике эти моменты происходят тогда, когда линия графика пути пересекает каждое деление по вертикальной оси S.

Теперь, для каждого участка пути этого движения размером в один метр, мы можем вычислить среднюю скорость по выражению (3). Оказывается, что такая средняя скорость, которая вычисляется на физически малых интервалах пути, называется мгновенной скоростью или просто скоростью.

На большом графике будет трудно нарисовать мгновенную скорость, поэтому рассмотрим отдельно первые два метра пути этого графика в увеличенном масштабе.

Закрашенными квадратами на жирной кривой линии пути отмечены точки, когда тело проходило путь кратный одному метру.

Тонкими прямыми показаны углы, тангенс каждого из которых является мгновенной скоростью, которая является средней на физически малом интервале.

Жирной пунктирной линией отмечен угол, тангенс которого равен средней скорости за путь в два метра.

Рассмотрим некоторую произвольно взятую в середине интервала пути точку X. В этой точке можно подсчитать среднюю скорость Vcp(), тонкой пунктирной линией показан угол, тангенс которого равен средней скорости в этой точке.

Мгновенная скорость V() определена как средняя скорость на физически малом интервале, а из свойства физической однородности такого интервала, на нем мы можем доопределять неизвестный характер движения произвольным образом, а именно, считать движение равномерным. Из свойства равномерного движения известно, что средняя скорость при таком движении постоянна и равна средней скорости на этом физически малом интервале, т.е. равна мгновенной скорости.

Заметим, что эти скорости подсчитаны для разных интерваловt. Средняя Vcp() дляt = – 0; мгновенная V() для другогоt, для физически малого интервала. Можно ли численно сравнить их между собой?

Они обе являются мерами изменения одной и той же величины (пути) по отношению к одной и той же единице другой величины (времени). Значит их сравнение в этом смысле физически корректно, и можно сказать, на сколько одна скорость больше другой и, значит, на сколько изменение пути от одной скорости больше, чем от другой, но вот расположение этих путей различно и связь этих скоростей с пройденным в точке Х путем S() различна. Мгновенная скорость V(t) и пройденный за это время путь S(t) не связаны между собой с помощью выражения (3), а средняя Vcp(t) наоборот связана.

Таким образом, и средняя, и мгновенная скорости показывают изменение пути по отношению к времени, но разного пути: мгновенная показывает изменение пути в некоторой окрестности точки X, на интервале вокруг этой точки, а средняя показывает общее изменение пути от момента времени, принятого за начало отсчета.

Это отличие средней и мгновенной скорости хорошо видно на этом графике в виде разного наклона линий для угла соответствующего средней скорости Vcp() за t = – 0 и для угла соответствующего средней скорости Vcp (за физически малый интервал) равной мгновенной V() за t = – 0, т.к. мы таким образом определили мгновенную скорость.

Несмотря на то, что мгновенная скорость за t = – 0 может быть подсчитана в точке как средняя на некотором интервале, ее значение в этой точке не связано со значением пройденного пути за t = – 0 с помощью выражения (3).

В общем, на интервале пути на графике размером в два метра, из линий углов соответствующих скоростям видно, что средняя скорость Vcp(t) и мгновенная скорость V(t) не является постоянными, изменяется от времени, но не равны между собой Vcp(t) V(t)const.

Физический смысл мгновенной скорости состоит в том, что это истинная скорость, с которой движется тело на небольшом участке пути, истинная скорость, с которой при движении взаимодействует тело с какими-то окружающими его телами (например, сталкивается или движется рядом).

Средняя скорость тоже может изменяться от времени и от физически малого интервала, но она не имеет такого физического смысла, как мгновенная скорость и не равна ей (Vcp(t) V(t)const).

Построим график скорости, значения мгновенной скорости получим по выражению (3) из графика пути для каждого физически малого интервала.

Можно вспомнить, что на графике скорости площадь прямоугольника под пунктирной линией соответствует пройденному для этой средней скорости пути.

Мгновенная скорость является средней для физически малого интервала, т.е. площадь под каждым прямоугольником со сплошной линией соответствует пройденному за физически малый интервал пути.

Общий пройденный путь равен сумме путей за физически малые интервалы, сумма площадей под каждым прямоугольником со сплошной линией равна площади прямоугольника под пунктирной линией, т.к. путь был пройден один и тот же.

Также еще раз надо отметить, что расчет пути с использованием мгновенной скорости абсолютно точен, несмотря на то, что мы не знаем характер изменения пути от времени на физически малом интервале.

Во время движения мгновенная скорость может возрастать, уменьшатся за время пути, а средняя скорость за весь путь не имеет об этом информации, для средней важен только результат движения, поэтому, когда мы хотим изучить подробности движения, мы используем мгновенную скорость.

III . Средняя и мгновенная скорости прямолинейного неравномерного движения

Движение, при котором за равные промежутки времени тело совершает неравные перемещения, называют неравномерным (или переменным). При переменном движении скорость тела с течением времени изменяется, поэтому для характеристики такого движения введены понятия средней и мгновенной скоростей.

Средней скоростью переменного движения vcp называют векторную величину, равную отношению перемещения тела s к промежутку времени t, за который было совершено это перемещение:

Средняя скорость характеризует переменное движение в течение только того промежутка времени, для которого эта скорость определена. Зная среднюю скорость за данный промежуток времени, можно определить перемещение тела по формуле s=vср·t лишь за указанный промежуток времени. Найти положение движущегося тела в любой момент времени с помощью средней скорости, определяемой по формуле (1.5), нельзя.

Как указывалось выше, когда тело движется по прямолинейной траектории в одну сторону, модуль его перемещения равен пройденному телом пути, т.е. |s|=s. В таком случае среднюю скорость определяют по формуле v=s/t, откуда имеем

s=vср·t. (1.6)

Мгновенной скоростью переменного движения называют скорость, которую тело имеет в данный момент времени (и следовательно, в данной точке траектории).

Выясним, каким способом можно определить мгновенную скорость тела. Пусть тело (материальная точка) совершает прямолинейное неравномерное движение. Определим мгновенную скорость v этого тела в произвольной точке С ее траектории (рис. 2).

Выделим маленький участок Ds1 этой траектории, включающий в себя точку С. Этот участок тело проходит за промежуток времени Dt1. Разделив Ds1 на Dt1, найдем значение средней скорости vcp1 =Ds1/Dt1 на участке Ds1. Затем для промежутка времени Dt2

Очевидно, что чем меньше промежуток времени Dt, тем меньше длина участка Ds, проходимого телом, и тем меньше значение средней скорости vcp=Ds/Dt отличается от значения мгновенной скорости в точке С. Если промежуток времени Dt стремится к нулю, длина участка пути Ds бесконечно уменьшается, а значение средней скорости vcp на этом участке стремится к значению мгновенной скорости в точке С. Следовательно, мгновенная скорость v есть предел, к которому стремится средняя скорость тела vcp, когда промежуток времени движения тела стремится к нулю:

v=lim(Ds/Dt). (1.7)

Из курса математики известно, что предел отношения приращения функции к приращению аргумента, когда последний стремится к нулю (если этот предел существует), представляет собой первую производную этой функции по данному аргументу. Поэтому формулу (1.7) запишем в виде

v=(ds/dt)=s" (1.8)

где символы d/dt или штрих справа вверху у функции обозначают производную этой функции. Следовательно, мгновенная скорость есть первая производная пути по времени.

Если аналитический вид зависимости пути от времени известен, с помощью правил дифференцирования можно определить мгновенную скорость в любой момент времени. В векторной форме

IV . Равноускоренное прямолинейное движение. Ускорение

Такое прямолинейное движение, при котором скорость тела за любые равные промежутки времени изменяется одинаково, называют равноускоренным прямолинейным движением.

Быстроту изменения скорости характеризуют величиной, обозначаемой а и называемой ускорением. Ускорением называют векторную величину, равную отношению изменения скорости тела v-v0 к промежутку времени t, в течение которого это изменение произошло:

a=(v-v0)/t. (1.9)

Здесь V0 - начальная скорость тела, т. е. его мгновенная скорость в момент начала отсчета времени; v - мгновенная скорость тела в рассматриваемый момент времени.

Из формулы (1.9) и определения равноускоренного движения следует, что в таком движении ускорение не изменяется. Следовательно, прямолинейное равноускоренное движение есть движение с постоянным ускорением (a=const). В прямолинейном равноускоренном движении векторы v0, v и а направлены по одной прямой. Поэтому модули их проекций на эту прямую равны модулям самих этих векторов, и формулу (1.9) можно записать в виде

a=(v-v0)/t. (1.10)

Из формулы (1.10) устанавливается единица ускорения.

В СИ единицей ускорения является 1 м/с2 (метр на секунду в квадрате); 1 м/с2 - это ускорение такого равноускоренного движения, при котором за каждую секунду скорость тела увеличивается на 1 м/с.

V . Формулы мгновенной и средней скоростей равноускоренного движения

Из (1.9) следует, что v= v0+at.

По этой формуле определяют мгновенную скорость v тела в равноускоренном движении, если его начальная скорость v0 и ускорение а известны. Для прямолинейного равноускоренного движения эту формулу можно записать в виде

Если v0 =0, то

Получим выражение для средней скорости прямолинейного равноускоренного движения. Из формулы (1.11) видно, что v=v0 при t=0, v1=v0+a при t=1, v2=v0+2a=v1+a при t=2 и т. д. Следовательно, в равноускоренном движении значения мгновенной скорости, которые тело имеет через равные промежутки времени, образуют такой ряд чисел, в котором каждое из них (начиная со второго) получается путем прибавления к предшествующему постоянного числа а. Это значит, что рассматриваемые значения мгновенной скорости образуют арифметическую прогрессию. Следовательно, средняя скорость прямолинейного равноускоренного движения может быть определена по формуле

vср=(v0+v)/2, (1.13)

где v0 - начальная скорость тела; v - скорость тела в данный момент времени.

VI . Способы определения мгновенной и средней скоростей в спорте.

Глазомерно расстояние определяют путем сравнения сизвестным на местности отрезком. На точность глазомерного определения расстояния оказывают влияние освещенность, размеры объекта, его контраст с окружающим фоном, прозрачность атмосферы и другие факторы. Расстояния кажутся меньшими, чем в действительности, при наблюдении через водные пространства, лощины и долины, при наблюдении крупных и отдельно расположенных объектов. И наоборот, расстояния кажутся большими, чем в действительности, при наблюдении в сумерках, против света, в туман, при пасмурной и дождливой погоде. Все эти особенности следует учитывать при глазомерном определении расстояний. Точность глазомерного определения расстояний зависит также от натренированности наблюдателя. Опытным наблюдателем расстояния до 1000 м могут быть определены глазомерно с ошибкой 10-15%. При определении расстояния более 1000 м ошибки могут достигать 30%, а при недостаточной опытности наблюдателя 50%.

Определение расстояний по спидометру. Расстояние, пройденное машиной, определяется как разность показаний спидометра в начале и конце пути. При движении по дорогам с твердым покрытием оно будет на 3-5%, а по вязкому грунту на 8-12% больше действительного расстояния. Такие погрешности в определении расстояний по спидометру возникают от пробуксовки колес (проскальзывания гусениц), износа протекторов покрышек и изменения давления в шинах. Если необходимо определить пройденное машиной расстояние возможно точнее, надо в показания спидометра внести поправку. Такая необходимость возникает, например, пря движении по азимуту или при ориентировании с использованием навигационных приборов.

Величина поправки определяется перед маршем. Для этого выбирается участок дороги, который по характеру рельефа и почвенного покрова подобен предстоящему маршруту. Этот участок проезжают с маршевой скоростью в прямом и обратном направлениях, снимая показания спидометра в начале и конце участка. По полученным данным определяют среднее значение протяженности контрольного участка и вычитают из него величину этого же участка, определенную по карте или на местности лентой (рулеткой). Разделив полученный результат на длину участка, измеренного по карте (на местности), и умножив на 100, получают коэффициент поправки.

Например, если среднее значение контрольного участка равно 4,2 км, а измеренное по карте 3,8 км, то коэффициент поправки

К=((4,2-3,8)/3,8)*100 = 10%

Таким образом, если длина маршрута, измеренного по карте, составляет 50 км, то на спидометре будет отсчет 55 км, т. е. на 10% больше. Разница в 5 км и есть величина поправки. В некоторых случаях она может быть отрицательной.

Измерение расстояний шагами. Этот способ применяется обычно при движении по азимуту, составлении схем местности, нанесении на карту (схему) отдельных объектов и ориентиров и в других случаях. Счет шагов ведется, как правило, парами. При измерении расстоянии большой протяженности шаги более удобно считать тройками попеременно под левую и правую ногу. После каждой сотни пар или троек шагов делается отметка каким-нибудь способом и отсчет начинается снова. При переводе измеренного расстояния шагами в метры число пар или троек шагов умножают на длину одной пары или тройки шагов. Например, между точками поворота на маршруте пройдено 254 пары шагов. Длина одной пары шагов равна 1,6 м. Тогда Д =254Х1,6=406,4 м.

Обычно шаг человека среднего роста равен 0,7- 0,8 м. Длину своего шага достаточно точно можно определить по формуле

где Д-длина одного шага в метрах

Р - рост человека в метрах.

Например, если рост человека 1,72 м, то длина его шага

Д=(1,72/4)+0,37=0,8 м.

Более точно длина шага определяется промером какого-нибудь ровного линейного участка местности, например дороги, протяженностью 200-300 м, который заранее измеряется мерной лентой (рулеткой, дальномером и т. п.). При приближенном измерении расстояний длину пары шагов принимают равной 1,5 м.

Средняя ошибка измерения расстояний шагами в зависимости от условий движения составляет около 2-5% пройденного расстояния.

Счет шагов может выполняться с помощью шагомера (рис.1). Он имеет вид и размеры карманных часов. Внутри прибора помещен тяжелый молоточек, который при встряхивании опускается, а под воздействием пружины возвращается в первоначальное положение. При этом пружина перескакивает по зубцам колесика, вращение которого передается на стрелки. На большой шкале циферблата стрелка показывает число единиц и десятков шагов, на правой малой-сотни, а на левой малой-тысячи. Шагомер подвешивают отвесно к одежде. При ходьбе вследствие колебания его механизм приходит в действие и отсчитывает каждый шаг.

Рис.1 Шагомер

Определение расстоянии по времени и скорости движения. Этот способ применяется для приближенного определения величины пройденного расстояния, для чего среднюю скорость умножают на время движения. Средняя скорость пешехода около 5, а при движении на лыжах 8-10 км/ч. Например, если разведывательный дозор двигался на лыжах 3 ч, то он прошел около 30 км.

Определение расстояний по соотношению скоростей звука и света. Звук распространяется в воздухе со скоростью 330 м/с, т. е. округленно 1 км за 3 с, а свет- практически мгновенно (300000 км/ч). Таким образом, расстояние в километрах до места вспышки выстрела (взрыва) равно числу секунд, прошедших от момента вспышки до момента, когда был услышан звук выстрела (взрыва), деленному на 3. Например, наблюдатель услышал звук взрыва через 11 с после вспышки. Расстояние до места вспышки

Д=11/3 = 3,7км.

Определение расстояний на слух. Натренированный слух-хороший помощник в определении расстояний ночью. Успешное применение этого способа во многом зависит от выбора места для прослушивания. Оно выбирается таким образом, чтобы ветер не попадал прямо в уши. Вокруг в радиусе нескольких метров устраняются причины шума, например сухая трава, ветки кустарника и т. п. В безветренную ночь при нормальном слухе различные источники шумов могут быть слышны на даль-ностях, указанных в табл. 1.

Таблица 1

Определение расстояний геометрическими построениями на местности. Этот способ может применяться при определении ширины труднопроходимых или непроходимых участков местности и препятствий (рек, озер, затопленных зон и т. п.). На рис.2 показано определение ширины реки построением на местности равнобедренного треугольника. Так как в таком треугольнике катеты равны, то ширина реки АВ равна длине катета АС. Точка А выбирается на местности так, чтобы с нее был виден местный предмет (точка В) на противоположном берегу, а также вдоль берега реки можно было измерить расстояние, равное ее ширине. Положение точки С находят методом приближения, измеряя угол АСВ компасом до тех пор, пока его значение не станет равным 45°.

Рис.2 Определение расстояний геометрическими построениями на местности.

Другой вариант этого способа показан на рис. 23,6. Точка С выбирается так, чтобы угол АСВ был равен 60°. Известно, что тангенс угла 60° равен 1/2, следовательно, ширина реки равна удвоенному значению расстояния АС. Как в первом, так и во втором случае угол при точке А должен быть равен 90°.

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

1.http://www.avtosport.ru/rally_pribor

2.http://worldhistory.clan.su/forum/75-673-1

3.http://miltop.narod.ru/Distance/other.htm

4.http://podhod.nm.ru/l89.htm

5.http://physlearn.narod.ru/phis1/part1.html

6.http://www.terver.ru/mgnovenskorostdvig.php

I.Введение

II. Отличие мгновенной скорости от средней.

III. Средняя и мгновенная скорости прямолинейного неравномерного движения

IV. Равноускоренное прямолинейное движение. Ускорение

V. Формулы мгновенной и средней скоростей равноускоренного движения

VI. Способы определения мгновенной и средней скоростей в спорте.

VII. Список используемой литературы