Начала занятия с гирей 8 кг. Лучшие упражнения с гирей и программы тренировок для жиросжигания и тонуса мышц

Механические колебания, распространяющиеся в упругой среде (твердой, жидкой или газообразной), называются механическими или упругими волнами .

Процесс распространения колебаний в сплошной среде называется волновым процессом или волной. Частицы среды, в которой распро-страняется волна, не вовлекаются волной в поступательное движение. Они лишь совершают колебания около своих положений равновесия. Вместе с волной от частицы к частице среды передаются лишь со-стояние колебательного движения и его энергия. Поэтому основным свойством всех волн, независимо от их природы, является перенос энергии без переноса вещества .

В зависимости от направления колебаний частиц по отношению

к направлению, в котором распространяется волна, различают про-

дольные и поперечные волны.

Упругая волна называется продольной , если колебания частиц среды происходят в направлении распространения волны. Продоль-ные волны связаны с объемной деформацией растяжения − сжатия среды, поэтому они могут распространяться как в твердых телах, так и

в жидкостях и газообразных средах.

x ляться деформации сдвига. Этим свойст-вом обладают только твердые тела.

λ На рис. 6.1.1 представлена гармони-

висимость смещения всех частиц среды от расстояния до источника колебаний в данный момент времени. Расстояние между ближайшими частицами, колеблющимися в одинаковой фазе, называется длиной волны. Длина волны также равна тому расстоянию,на которое рас-пространяется определенная фаза колебания за период колебаний

Колеблются не только частицы, расположенные вдоль оси 0х , а совокупность частиц, заключенных в некотором объеме. Геометриче-ское место точек, до которых доходят колебания к моменту времени t , называется фронтом волны . Фронт волны представляет собой ту по-верхность, которая отделяет часть пространства, уже вовлеченную в волновой процесс, от области, в которой колебания еще не возникли. Геометрическое место точек, колеблющихся в одинаковой фазе, назы-вается волновой поверхностью . Волновую поверхность можно провес-ти через любую точку пространства, охваченного волновым процес-сом. Волновые поверхности могут быть любой формы. В простейших случаях они имеют форму плоскости или сферы. Соответственно вол-на в этих случаях называется плоской или сферической. В плоской волне волновые поверхности представляют собой множество парал-лельных друг другу плоскостей, а в сферической − множество концен-трических сфер.

Уравнение плоской волны

Уравнением плоской волны называется выражение, которое да-ет смещение колеблющейся частицы как функцию ее координат x , y , z и времени t

S = S (x , y , z ,t ). (6.2.1)

Эта функция должна быть периодической как относительно времени t , так и относительно координат x , y , z . Периодичность по времени вытекает из того, что смещение S описывает колебания час-тицы с координатами x , y , z , а периодичность по координатам следует из того, что точки, отстоящие друг от друга на расстоянии, равном длине волны, колеблются одинаковым образом.

Предположим, что колебания носят гармонический характер, а ось 0х совпадает с направлением распространения волны. Тогда вол-новые поверхности будут перпендикулярны оси 0х и, поскольку все

точки волновой поверхности колеблются одинаково, смещение S бу-дет зависеть только от координаты х и времени t

Найдем вид колебания точек в плоскости, соответствующей произвольному значению х . Для того, чтобы пройти путь от плоско-сти х = 0 до плоскости х , волне требуется время τ = x /υ. Следователь-но, колебания частиц, лежащих в плоскости х , будут отставать по времени на τ от колебаний частиц в плоскости х = 0 и описываться уравнением

S ( x ; t )= A cosω( t − τ)+ϕ = A cos ω t x . (6.2.4)
υ

где А − амплитуда волны; ϕ 0 − начальная фаза волны (определяется выбором начал отсчета х и t ).

Зафиксируем какое-либо значение фазы ω(t x υ) +ϕ 0 = const .

Это выражение определяет связь между временем t и тем местом х , в котором фаза имеет фиксированное значение. Продифференцировав данное выражение, получим

Придадим уравнению плоской волны симметричный относи-

тельно х и t вид. Для этого введем величину k = 2 λ π , которая называ-

ется волновым числом , которое можно представить в виде

Мы предполагали, что амплитуда колебаний не зависит от х . Для плоской волны это наблюдается в том случае, когда энергия вол-ны не поглощается средой. При распространении в поглощающей энергию среде интенсивность волны с удалением от источника коле-баний постепенно уменьшается, т. е. наблюдается затухание волны. В однородной среде такое затухание происходит по экспоненциальному

закону A = A 0 e −β x . Тогда уравнение плоской волны для поглощающей среды имеет вид

где r r − радиус-вектор, точки волны; k = k n r − волновой вектор ; n r − единичный вектор нормали к волновой поверхности.

Волновой вектор −это вектор,равный по модулю волновомучислу k и имеющий направление нормали к волновой поверхности на-

зывается.
Перейдем от радиус-вектора точки к ее координатам x , y , z
r r (6.3.2)
k r = k x x + k y y + k z z .
Тогда уравнение (6.3.1) примет вид
S (x , y , z ; t )= A cos(ω t k x x k y y k z z +ϕ 0). (6.3.3)

Установим вид волнового уравнения. Для этого найдем вторые частные производные по координатам и времени выражение (6.3.3)

∂ 2 S r r
t = −ω A cos t k r +ϕ 0) = −ω S ;
∂ 2 S r r
x = − k x A cos(ω t k r +ϕ 0) = −k x S
. (6.3.4)
∂ 2 S r r
y = − k y A cos t k r +ϕ 0) = −k y S ;
∂ 2 S r r
z = − k z A cos(ω t k r +ϕ 0) = −k z S
Сложив производные по координатам, и с учетом производной
по времени, получим
2 2 2 2
S 2 + S 2 + S 2 = − (k x 2 + k y 2 + k z 2)S = − k 2 S = k S 2 . (6.3.5)
t
x y z ω
2
Произведем замену k = ω 2 = и получим волновое уравнение
ω υ ω υ
∂ 2 S + ∂ 2 S + ∂ 2 S = 1 ∂ 2 S или S = 1 ∂ 2 S , (6.3.6)
x 2 y 2 z 2 υ 2 ∂t 2 υ 2 ∂t 2
где = ∂ 2 + ∂ 2 + ∂ 2 − оператор Лапласа.
x 2 y 2 z 2

Cтраница 1


Процесс распространения колебаний в упругой среде называют звуковым.  

Процесс распространения колебаний в пространстве называется волной. Граница, отделяющая колеблющиеся частицы от частиц, еще не начавших колебаться, носят название фронта водны. Распространение волны в среде характеризуется скоростью, называемой скоростью ультразвуковой волны. Расстояние между ближайшими частицами, колеблющимися одинаковым образом (в одинаковой фазе), называется длиной волны. Число волн, проходящих через данную точку в 1 с, называется частотой ультразвука.  

Процесс распространения колебаний в упругой среде называется волновым движением, или упругой волной.  

Процесс распространения колебаний в пространстве с течением времени называют волной. Волны, распространяющиеся за счет упругих свойств среды, называют упругими. Упругие волны бывают поперечными и продольными.  

Процесс распространения колебаний в упругой среде называется волной. Если направление колебаний совпадает с направлением распространения волны, то такая волна называется продольной, например звуковая волна в воздухе. Если направление колебаний перпендикулярно направлению распространения волны, то такая волна называется поперечной.  

Процесс распространения колебаний в пространстве называется волновым процессом.  

Процесс распространения колебаний в пространстве называется волной.  

Процесс распространения колебаний в упругой среде называется волной. Если направление колебаний совпадает с направлением распространения волны, то такая волна называется продольной, например звуковая волна в воздухе. Если направление колебаний перпендикулярно направлению распространения волны, то такая волна называется поперечной.  

Процесс распространения колебаний частиц в упругой среде называется волновым процессом или просто волной.  

Процессы распространения колебания частиц жидкости или газа в трубе осложняются влиянием ее стенок. Косые отражения вдлн от стенок трубы создают условия для образования радиальных колебаний. Поставив задачу исследования аксиальных колебаний частиц жидкости или газа в узких трубах, мы должны учесть ряд условий, при которых можно пренебречь радиальными колебаниями.  

Волной называется процесс распространения колебаний в среде. Каждая частица среды при этом колеблется около положения равновесия.  

Волной называется процесс распространения колебаний.  

Рассмотренный нами процесс распространения колебаний в упругой среде является примером волновых движений, или, как обычно говорят, волн. Так, например, оказывается, что электромагнитные волны (см. § 3.1) могут распространяться не только в веществе, но и в вакууме. Таким же свойством обладают так называемые гравитационные волны (волны тяготения), с помощью которых передаются возмущения полей тяготения тел, обусловленные изменением масс этих тел или их положений в пространстве. Поэтому в физике волнами называют всякие распространяющиеся в пространстве возмущения состояния вещества или поля. Так, например, звуковые волны в газах или жидкостях представляют собой колебания давления, распространяющиеся в этих средах, а электромагнитные волны - распространяющиеся в пространстве колебания напряженностей Е и Н электромагнитного поля.  

Лекция № 9

Механические волны

6.1. Распространение колебаний в упругой среде .

6.2. Уравнение плоской волны .

6.3. Волновое уравнение .

6.4. Скорость распространения волн в различных средах .

Механические колебания, распространяющиеся в упругой среде (твердой, жидкой или газообразной), называются механическими или упругими волнами .

Процесс распространения колебаний в сплошной среде принято называть волновым процессом или волной. Частицы среды, в которой распространяется волна, не вовлекаются волной в поступательное движение. они лишь совершают колебания около своих положений равновесия. Вместе с волной от частицы к частице среды передаются лишь состояние колебательного движения и его энергия. По этой причине основным свойством всœех волн, независимо от их природы, является перенос энергии без переноса вещества .

Учитывая зависимость отнаправления колебаний частиц по отношению к направлению, в котором распространяется волна, различают продольные и поперечные волны.

продольной , если колебания частиц среды происходят в направлении распространения волны. Продольные волны связаны с объемной деформацией растяжения − сжатия среды, в связи с этим они могут распространяться как в твердых телах, так и в жидкостях и газообразных средах.

Упругая волна принято называть поперечной , если колебания частиц среды происходят в плоскостях, перпендикулярных к направлению распространения волны Поперечные волны могут возникать только в такой среде, которая обладает упругостью формы, т. е. способна сопротивляться деформации сдвига. Этим свойством обладают только твердые тела.

На рис. 6.1.1 представлена гармоническая поперечная волна, распространяющаяся вдоль оси 0х . График волны дает зависимость смещения всœех частиц среды от расстояния до источника колебаний в данный момент времени. Расстояние между ближайшими частицами, колеблющимися в одинаковой фазе, принято называть длиной волны. Длина волны также равна тому расстоянию, на ĸᴏᴛᴏᴩᴏᴇ распространяется определœенная фаза колебания за период колебаний

Колеблются не только частицы, расположенные вдоль оси 0х , а совокупность частиц, заключенных в некотором объеме. Геометрическое место точек, до которых доходят колебания к моменту времени t , принято называть фронтом волны . Фронт волны представляет собой ту поверхность, которая отделяет часть пространства, уже вовлеченную в волновой процесс, от области, в которой колебания еще не возникли. Геометрическое место точек, колеблющихся в одинаковой фазе, принято называть волновой поверхностью . Волновую поверхность можно провести через любую точку пространства, охваченного волновым процессом. Волновые поверхности бывают любой формы. В простейших случаях они имеют форму плоскости или сферы. Соответственно волна в этих случаях принято называть плоской или сферической. В плоской волне волновые поверхности представляют собой множество параллельных друг другу плоскостей, а в сферической − множество концентрических сфер.

Пусть колеблющееся тело находится в среде, все частицы которой связаны между собой. Соприкасающиеся с ним частицы среды придут в колебательное движение, в результате чего в прилегающих к этому телу участках среды возникают периодические деформации (например, сжатие и растяжение). При деформациях в среде появляются упругие силы, которые стремятся вернуть частицы среды в первоначальное состояние равновесия.

Таким образом, периодические деформации, которые появились в каком-нибудь месте упругой среды, будут распространяться с некоторой скоростью, зависящей от свойств среды. При этом частицы среды не вовлекаются волной в поступательное движение, а совершают колебательные движения около своих положений равновесия, от одних участков среды к другим передается только упругая деформация.

Процесс распространения колебательного движения в среде называется волновым процессом или просто волной . Иногда эту волну называют упругой, потому что она обусловлена упругими свойствами среды.

В зависимости от направления колебаний частиц по отношению к направлению распространения волны, различают продольные и поперечные волны. Интерактивная демонстрация поперечной и продольной волны









Продольная волна это волна, в которой частицы среды колеблются вдоль направления распространения волны.



Продольную волну можно наблюдать на длинной мягкой пружине большого диаметра. Ударив по одному из концов пружины, можно заметить, как по пружине будут распространяться последовательные сгущения и разрежения ее витков, бегущие друг за другом. На рисунке точками показано положение витков пружины в состоянии покоя, а затем положения витков пружины через последовательные промежутки времени, равные четверти периода.


Таким образом, про дольная волна в рассматриваемом случае представляет собой чередующиеся сгущения (Сг) и разрежения (Раз) витков пружины .
Демонстрация распространения продольной волны


Поперечная волна - это волна, в которой частицы среды колеблются в направлениях, перпендикулярных к направлению распространения волны.


Рассмотрим подробнее процесс образования поперечных волн. Возьмем в качестве модели реального шнура цепочку шариков (материальных точек), связанных друг с другом упругими силами. На рисунке изображен процесс распространения поперечной волны и показаны положения шариков через последовательные промежутки времени, равные четверти периода.

В начальный момент времени (t 0 = 0) все точки находятся в состоянии равновесия. Затем вызываем возмущение, отклонив точку 1 от положения равновесия на величину А и 1-я точка начинает колебаться, 2-я точка, упруго связанная с 1-й, приходит в колебательное движение несколько позже, 3-я - еще позже и т.д. Через четверть периода колебания ( t 2 = T 4 ) распространятся до 4-й точки, 1-я точка успеет отклониться от своего положения равновесия на максимальное расстояние, равное амплитуде колебаний А. Через половину периода 1-я точка, двигаясь вниз, возвратится в положение равновесия, 4-я отклонилась от положения равновесия на расстояние, равное амплитуде колебаний А, волна распространилась до 7-й точки и т.д.

К моменту времени t 5 = T 1-я точка, совершив полное колебание, проходит через положение равновесия, а колебательное движение распространится до 13-й точки. Все точки от 1-й до 13-й расположены так, что образуют полную волну, состоящую из впадины и гребня.

Демонстрация распространения поперечной волны

Вид волны зависит от вида деформации среды. Продольные волны обусловлены деформацией сжатия - растяжения, поперечные волны - деформацией сдвига. Поэтому в газах и жидкостях, в которых упругие силы возникают только при сжатии, распространение поперечных волн невозможно. В твердых телах упругие силы возникают и при сжатии (растяжении) и при сдвиге, поэтому в них возможно распространение как продольных, так и поперечных волн.

Как показывают рисунки, и в поперечной и в продольной волнах каждая точка среды колеблется около своего положения равновесия и смещается от него не более чем на амплитуду, а состояние деформации среды передается от одной точки среды к другой. Важное отличие упругих волн в среде от любого другого упорядоченного движения ее частиц заключается в том, что распространение волн не связано с переносом вещества среды.

Следовательно, при распространении волн происходит перенос энергии упругой деформации и импульса без переноса вещества. Энергия волны в упругой среде состоит из кинетической энергии совершающих колебания частиц и из потенциальной энергии упругой деформации среды.


Чтобы понять, как распространяются колебания в среде, начнем издалека. Вы отдыхали когда-нибудь на берегу моря, наблюдая за методично набегающими на песок волнами? Чудесное зрелище, не правда ли? Но в этом зрелище кроме удовольствия можно отыскать и некоторую пользу, если немного задуматься и порассуждать. Порассуждаем и мы, дабы принести пользу своему уму.

Что такое волны?

Принято считать, что волны это перемещение воды. Возникают они вследствие дующего над морем ветра. Но получается, что если волны это перемещение воды, то дующий в одном направлении ветер должен был бы за некоторое время просто-напросто перегнать большую часть морской воды с одного конца мора в другой. И тогда где-то, скажем у берегов Турции, вода ушла бы на несколько километров от берега, а в Крыму был бы потоп.

А если над одним морем дуют два разных ветра, то где-то они могли бы организовать большущую яму прямо в воде. Однако, так не происходит. Бывают, конечно, затопления прибрежных территорий во время ураганов, но море просто обрушивает свои волны на берег, тем дальше, чем они выше, однако оно само не перемещается.

Иначе моря могли бы так и путешествовать по всей планете вместе с ветрами. Поэтому выходит, что вода не перемещается вместе с волнами, а остается на месте. Что же тогда такое волны? Какова их природа?

Распространение колебаний и есть волны?

Колебания и волны проходят в 9 классе в курсе физики в одной теме. Логично предположить тогда, что это два явления одной природы, что они связаны. И это совершенно верно. Распространение колебаний в среде это и есть волны.

Увидеть это наглядно очень просто. Привяжите веревку одним концом к чему-либо неподвижному, а другой конец натяните и потом слегка встряхните.

Вы увидите, как по веревке от руки побегут волны. При этом сама веревка не перемещается от вас, она колеблется. По ней распространяются колебания от источника, и передается энергия этих колебаний.

Именно поэтому, волны выбрасывают на берег предметы и обрушиваются с силой сами они передают энергию. Однако само вещество при этом не перемещается. Море остается на своем законном месте.

Продольные и поперечные волны

Различают продольные и поперечные волны. Волны, в которых колебания происходят вдоль направления их распространения, называют продольными . А поперечные волны это волны, распространяющиеся перпендикулярно направлению колебаний.

Как вы думаете, какие волны были у веревки или морских волн? Поперечные волны были в нашем примере с веревкой. Колебания у нас были направлены вверх-вниз, а волна распространялась вдоль веревки, то есть перпендикулярно.

Чтобы получить продольные волны в нашем примере, нам надо веревку заменить на резиновый шнур. Натянув шнур неподвижно, надо пальцами растянуть его в некотором месте и отпустить. Натянутый отрезок шнура сократится, но энергия этого растяжения-сокращения будет какое-то время передаваться по шнуру дальше в виде колебаний.