Физиология мышечного сокращения. Механизм сокращения и расслабления мышечного волокна

Как только в мышечное волокно перестают поступать нервные импульсы, ионы Са^ под действием так называемого кальциевого насоса за счет энергии АТФ уходят в цистерны саркоплазматического ретикулюма и их концентрация в саркоплазме понижается до исходного уровня. Это вызывает изменения конформации тропонина, который, фиксируя тропомиозин в определенном участке актиновых нитей, делает невозможным образование поперечных мостиков между толстыми и тонкими нитями. За счет упругих сил, возникающих при мышечном сокращении в коллагеновых нитях, окружающих мышечное волокно, оно при расслаблении возвращается в исходное состояние. Таким образом, процесс мышечного расслабления, или релаксации, так же, как и процесс мышечного сокращения, осуществляется с использованием энергии гидролиза АТФ.

В ходе мышечной деятельности в мышцах поочередно происходят процессы сокращения и расслабления и, следовательно, скоростно-силовые качества мышц в равной мере зависят от скорости мышечного сокращения и от способности мышц к релаксации .


ЗАКЛЮЧЕНИЕ

Рассмотрев понятия «мускулатура» и «мышечное сокращение» можно сделать ряд выводов.

Мышечное волокно является многоядерной структурой, окруженной мембраной и содержащей специализированный сократительный аппарат - миофибриллы.

В процессе мышечного сокращения потенциальная химическая энергия переходит в потенциальную механическую энергию напряжения и кинетическую энергию движения. Основой всех типов мышечного сокращения служит взаимодействие примеактина и миозина.

В скелетных мышцах за сокращение отвечают миофибриллырно две трети сухого веса мышц). Сокращение происходит при увеличении концентрации в цитоплазме ионов Ca 2+ в результате скольжения миозиновых филаментов относительно актиновых.

Непосредственным источником энергии для мышечного сокращения является расщепление высокоэнергетического вещества АТФ. В мышце происходит также промежуточная реакция, вовлекающая 2-ое высокоэнергетическое вещество – креатинфосфат (КФ). Оно не может действовать как непосредственный источник энергии, поскольку его расщепление не оказывает влияние на сократительные белки мышцы. КФ обеспечивает энергией ресинтез АТФ. В свою очередь, энергия для ресинтеза КФ обеспечивается окислением.



Сокращение мышечного волокна заключается в укорочении миофибрилл в пределах каждого саркомера. Толстые (миозиновые) и тонкие (актиновые) нити, в расслабленном состоянии связанные только концевыми отделами, в момент сокращения осуществляют скользящие движения навстречу друг другу. Выделение необходимой для сокращения энергии происходит в результате превращения АТФ в АДФ под влиянием миозина. Ферментная активность миозина проявляется при условии оптимального содержания Са2+, которые накапливаются в саркоплазматической сети.

Весь процесс от появления мышечного потенциала действия до сокращения мышечного волокна называется электромеханической связью (или электромеханическим сопряжением).

КПД мышечной клетки около 50 %, мышцы в целом не более 20%. Максимальная сила мышц не достигается в реальных условиях; не все клетки мышцы используются одновременно и сокращаются с максимальной силой, иначе при сокращении многих скелетных мышц будут повреждены сухожилия или кости (что иногда и наблюдается при сильных судорогах). КПД мышцы также зависит от внешних условий; например, на холоде он значительно снижается, так как для организма важнее сохранить температуру тела.

В динамическом режиме работоспособность мышцы определяется скоростью расщепления и ресинтеза АТФ. При этом скорость расщепления АТФ может увеличиваться в 100 раз и более. Ресинтез АТФ может обеспечиваться за счет окислительного расщепления глюкозы. Действительно, при умеренных нагрузках ресинтез АТФ обеспечивается повышенным потреблением мышцами глюкозы и кислорода. Это сопровождается увеличением кровотока через мышцы примерно в 20 раз, увеличением минутного объема сердца и дыхания в 2-3 раза. У тренированных лиц (например, спортсмена) большую роль в обеспечении повышенной потребности организма в энергии играет повышение активности митохондриальных ферментов.

При максимальной физической нагрузке происходит дополнительное расщепление глюкозы путем анаэробного гликолиза. Во время этих процессов ресинтез АТФ осуществляется в несколько раз быстрее и механическая работа, производимая мышцами также больше, чем при аэробном окислении. Предельное время для такого рода работы составляет около 30 с, после чего возникает накопление молочной кислоты, т. е. метаболический ацидоз, и развивается утомление.

Анаэробный гликолиз имеет место и в начале длительной физической работы, пока не увеличится скорость окислительного фосфорилирования таким образом, чтобы ресинтез АТФ вновь сравнялся с его распадом. После метаболической перестройки спортсмен обретает как бы второе дыхание. Подробные схемы метаболических процессов приведены в руководствах по биохимии.

Основа сокращения мышцы - биохимические процессы, которые совершаются в 2 фазы: первую, анаэробную (бескислородную), и вторую, аэробную (кислородную). В каждой из этих фаз происходит расщепление веществ с освобождением энергии и их восстановление (ресинтез). Поэтому мышца, лишенная кислорода, может долго работать при условии удаления остаточных продуктов обмена веществ.

В ходе мышечной деятельности в мышцах поочередно происходят процессы сокращения и расслабления и, следовательно, скоростно-силовые качества мышц в равной мере зависят от скорости мышечного сокращения и от способности мышц к релаксации.


ГЛОССАРИЙ

Актин - белок мышечных волокон, участвующий в сократительных процессах в клетке. Содержится преимущественно в клетках мускульных тканей.

АТФ – аденилпирофосфорная кислота, нуклеотид, содержащий аденин, рибозу и три остатка фосфорной кислоты, универсальный переносчик и

основной аккумулятор химической энергии в живых клетках, выделяющейся при переносе электронов в дыхательной цепи.

Афферентное волокно – центростремительное нервное волокно (отростки нервных клеток), по которым возбуждение передается от тканей к ЦНС.

Гладкие мышцы – сократимая ткань, состоящая из клеток и не имеющая поперечной исчерчённости.

Дефосфолирирование - отщепление остатка фосфорной кислоты от молекулы фосфорсодержащего соединения.

Кинестезия – ощущение положения и движения отдельных частей тела, сопротивления и тяжести внешних предметов.

Миозин - белок мышечных волокон; образует с актином основной сократительный элемент мышц актомиозин.

Миофибрилл - органеллы клеток поперечнополосатых мышц, обеспечивающие их сокращение, служащие для сокращений мышечных волокон.

Мышечное сокращение - реакция мышечных клеток на воздействие нейромедиатора, реже гормона, проявляющаяся в уменьшении длины клетки.

Мышечные ткани - ткани, различные по строению и происхождению, но сходные по способности к выраженным сокращениям, состоящие из вытянутых клеток, которые принимают раздражение от нервной системы и отвечают на него сокращением.

Мыщцы - органы тела животных и человека, состоящие из упругой, эластичной мышечной ткани, способной сокращаться под влиянием нервных импульсов, предназначенные для выполнения различных действий: движения тела, сокращения голосовых связок, дыхания.

Персинаптическая мембрана – участок поверхностной мембраны нервного волокна, через который медиатор выделяется в синаптическую щель; структурный элемент синапса.

Постсинаптическая мембрана – у толщенная поверхностная мембрана клетки в области синапса, обладающая чувствительностью к медиатору.

Релаксация - состояние покоя, расслабленности, возникающее у субъекта следствие снятия напряжения, после сильных переживаний или физических усилий.

Ресинтез - процесс обратного восстановления исходного сложного химического соединения из «осколков», образовавшихся при его распаде или метаболизме.

Синапс - место контакта между двумя нейронами или между нейроном и получающей сигнал эффекторной клеткой.

Фосфорилирование - процесс переноса остатка фосфорной кислоты от фосфорилируущего агента-донора.

ЦНС – центральная нервная система

Эфферентное волокно – центробежные нервные волокна по которым возбуждение передаётся от ЦНС (от клетки) к тканям.


СПИСОК ЛИТЕРАТУРЫ

1. Физическая культура студента: Учебник / Под ред. В.И. Ильинича. М.: Гардарики, 2000. - 448 с.

2. Физическая культура. Серия «Учебники, учебные пособия». Ростов-н/Д: Феникс, 2003. - 384 с

3. www.wikipedia.ru


Тонкая структура мышц

Скелетная мышца позвоночных состоит из нескольких тысяч параллельных мышечных волокон диаметром 10-100 мкм, заключенных в общую оболочку. К каждому мышечному волокну через концевую пластинку присоединено окончание нервного волокна. Мышечное волокно способно к сокращению под действием нервного импульса и представляет собой функциональный элемент мышечной системы. Протяженность волокна может быть равна длине самой мышцы или значительной ее части. Волокна на каждом конце мышцы переходят на сухожилие, которое принимает на себя напряжение при сокращении.

Мышечное волокно в свою очередь содержит 1000-2000 параллельных мышечных фибрилл (миофибрилл) диаметром около 1 мкм. Весь пучок миофиорилл обтянут мембраной мышечного волокна - плазмалеммой. Плазмалемма, подобно мембранам всех других клеток, состоит из трех слоев белков и липидов общей толщиной около 10 нм и электрически поляризована. Мембранный потенциал достигает 100 мВ. Сверху плазмалемма покрыта тонким слоем коллагеновых нитей, обладающих упругими свойствами.

В мышечном волокне содержится много ядер, располагающихся вблизи плазмалеммы, и большое количество митохондрий, находящихся между фибриллами. Митохондрии являются центрами образования макроэргических соединений, прежде всего АТФ. Отсюда макроэргические соединения через саркоплазму поступают к фибриллам.

При микроскопическом исследовании видно, что в скелетных мышечных волокнах правильно чередуются темные и светлые полосы, образуя характерную поперечную полосатость. Поперечная полосатость волокон обусловлена поперечной полосатостью миофибрилл, расположенных строго определенно друг подле друга.

Применяя метод электронного микроскопировапия и метод рентгеноструктурного анализа, удалось выяснить, что каждая миофибрилла состоит из параллельно лежащих толстых и тонких нитей - протофибрилл, чередующихся строго определенным образом. Дальнейшие исследования позволили установить, что толстые нити образованы молекулами белка миозина, а тонкие молекулами белка актина. Длина миозиновых нитей составляет примерно 1,5 мкм, а актиновых 1 мкм; толщина – соответственно 16 и 5-7 нм.

В результате чередования толстых и тонких нитей возникает поперечная исчерченность, видимая под микроскопом. Для микроскопической картины поперечнополосатой мышцы характерно чередование плотных анизотропных полос (их называют А-диски) и светлых изотропных полос (I-диски). В А-дисках миозиновые нити образуют гексагональную (шестиугольную) упаковку; именно они обусловливают высокую оптическую плотность дисков. Активные нити прикрепляются с каждой стороны к узкой белковой структуре, так называемой Z-мембране, которая пересекает I-диск. Отрезок миофибрилл, заключенный между двумя Z-мембранами, называется саркомером. В мышечном волокне в том месте, где оба типа протофибрилл накладываются друг на друга, тонких протофибрилл в пучке в 2 раза больше, чем толстых. Тонкие протофибриллы оканчиваются у края Н-зоны – области с более низкой оптической плотностью, находящейся в середине А-диска. В центре А-диска расположена узкая темная полоска, известная под названием линии М. Считают, что эта линия соответствует небольшому утолщению, которое имеется в центре каждой толстой нити.

Как показали Хэнсон и Леви, актиновые протофибриллы имеют форму двойной спирали, образованную глобулярными молекулами актина. Вся структура напоминает две плотные нитки бус, закрученные одна вокруг другой, где роль одной бусинки играет глобулярная молекула актина. Миозиновые протофибриллы также представляют собой результат агрегации отдельных молекул миозина. До настоящего времени окончательно не выяснено, как происходит соединение молекул миозина в протофибрилле.

При увеличении до 600000 раз на микрофотографиях продольного среза мышцы можно видеть, что пары толстых и тонких протофибрилл соединены поперечными мостиками. Эти поперечные мостики являются единственным связующим звеном между протофибриллами и обеспечивают структурную целостность мышцы. В дальнейшем в результате применения метода рентгеноструктурного анализа было показано, что мостики образованы отростками миозиновых нитей, расположенных с интервалом 6-7 нм. Мостики соединяют толстую нить с каждой из шести тонких нитей, располагаясь по спирали, витки которой повторяются через каждые 40 нм. В центральной части миозиновых протофибрилл мостики отсутствуют и на электронной микрофотографии этим участкам соответствует «псевдо Н-зона», обладающая более низкой оптической плотностью, чем Н-зона.

Ферментативные свойства актомиозина. Кальциевый насос

В.А. Энгельгардтом и М.Н. Любимовой (1939) было сделано очень важное открытие; они показали, что наряду с сократительными свойствами миозин обладает ферментативными свойствами, являясь ферментом аденозинтрифосфатазой, расщепляющей АТФ. В миофибриллах через поперечные мостики миозин образует комплексное соединение с актином. Энергия, выделяющаяся в процессе гидролиза АТФ, непосредственно используется для сокращения актомиозинового комплекса. Ферментативная активность актомиозина примерно в 10 раз выше активности одного миозина.

Ферментативная активность, а следовательно, и способность к сокращению актомиозинового комплекса сильно зависят от присутствия в среде ионов кальция. Многие ученые считают, что в отсутствие ионов кальция актомиозин вообще не способен расщеплять АТФ и сокращаться. При увеличении концентрации кальция до определенного предела активность актомиозина увеличивается и достигает максимального значения при концентрации кальция, равной концентрации АТФ в среде. Предполагают, что ионы кальция входят в состав активных центров миозина, локализованных в области поперечных мостиков, и только после этого миозин проявляет АТФ-азную активность. Непосредственной причиной, вызывающей расщепление АТФ и сокращение миофибрилл, служит появление свободных ионов кальция в саркоплазме. Так, инъекция раствора, содержащего ионы кальция, в саркоплазму приводит к сокращению мышечного волокна при отсутствии нервного импульса и потенциала действия мышечного волокна. Наконец, с помощью специальных индикаторов кальция было показано, что в момент сокращения волокна происходит увеличение концентрации ионов кальция в саркоплазме.

Согласно современным представлениям, в клетках функционирует специальный кальциевый насос, работа которого вызывает сокращение и расслабление миофибрилл. Этот насос, по мнению Бендолла, локализован в мембранах саркоплазматического ретикулума (эндоплазматической сети) мышечного волокна. Саркоплазматический ретикулум состоит из поперечно и продольно расположенных в саркоплазме трубочек, цистерн, пузырьков, стенки которых имеют типичное мембранное строение. Поперечная система саркоплазматического ретикулума представляет собой впячивание плазмалеммы, идущие внутрь в виде трубочек и охватывающие каждую фибриллу на уровне соединения А- и I-дисков в мышцах млекопитающих и на уровне Z-мембран у холоднокровных. По поперечным трубочкам саркоплазматического ретикулума возбуждение в виде волны деполяризации передается от поверхности волокна, возбуждаемой нервным импульсом, к миофибриллам.

Это подтверждается классическим опытом Хаксли с локальным раздражением мышечного волокна лягушки. Микроэлектродом наносили очень слабое подпороговое раздражение на различные участки волокна. Локальное сокращение нескольких миофибрилл возникало только в случае нанесения раздражения на уровне Z-мембран, где локализованы трубочки поперечного саркоплазматического ретикулума. От поперечного ретикулума возбуждение передается расположенному между фибриллами продольному ретикулуму, где локализован кальциевый насос. Предполагается, что в процессе проведения возбуждения по мембранам ретикулума основную роль играют не ионы натрия и калия, а ионы кальция и магния.

Деполяризация мембран трубочек и пузырьков саркоплазматического ретикулума приводит к освобождению содержащихся в них моном кальция. Механизм освобождения ионов кальция пока не установлен. Возможно, это связано с увеличением проницаемости мембран для ионов кальция при возбуждении и последующей диффузией их по концентрационному градиенту в саркоплазму.

Появление свободных ионов кальция в саркоплазме приводит к проявлению АТФ-азной активности актомиозина и к сокращению миофибрилл. Для сокращения миофибрилл необходимо также наличие ионов магния, механизм действия которых пока не установлен.

Процесс расслабления миофибрилл связан с удалением ионов кальция из саркоплазмы, осуществляемым саркоплазматическим ретикулумом. Элементы ретикулума обладают способностью к активному поглощению ионов кальция из окружающего раствора. Препараты саркоплазматического ретикулума, выделенного из мышц путем дифференцированного центрифугирования их гомогенатов, обладают способностью поглощать ионы кальция из раствора. При этом в некоторых случаях концентрация кальция внутри пузырьков и цистерн ретикулума превышала концентрацию кальция в окружающем растворе в 2000 раз. Наличие активного переноса кальция при расслаблении миофибрилл подтверждается и тем, что концентрация кальция в саркоплазме после микроинъекции начинает постепенно уменьшаться, что сопровождается расслаблением миофибрилл. Возможно, как предполагает Бендолл, что обратный перенос кальция связан с самим движением протофибрилл при сокращении, что исключает необходимость наличия специального механизма активного переноса кальция.

Прежнее представление, согласно которому расслабление вызывается освобождением специфического фактора расслабления - фактора Марша, оказалось ошибочным. Этот фактор выделялся путем экстракции из гомогенатов мышц. Он содержал ферменты, имеющиеся и саркоплазме, и фрагменты ретикулума. Один из этих ферментов и был принят за фактор расслабления, хотя на самом деле расслабляющее действие оказывали фрагменты ретикулума.

Необходимо отметить, что расслабление миофибрилл при удалении ионов кальция из саркоплазмы происходи только в том случае, если в саркоплазме содержится АТФ. Удаление АТФ из саркоплазмы приводит к возникновению между актином и миозином сильных электростатических связей, что обусловливает окоченение (контрактуру) мышцы и потерю ею способности к растяжению.

Таким образом, сокращение миофибрилл вызывается расщеплением АТФ в присутствии ионов кальция, а расслабление – поступлением новых молекул АТФ к протофибриллам при отсутствии ионов кальция. Регулятором сокращения и расслабления миофибрилл является поступление ионов кальция в саркоплазму и их удаление в саркоплазматический ретикулум.

Восстановление первоначальной длины мышцы после сокращения обусловлено, вероятно, наличием упругих элементов в мышечных волокнах и работой мышц антагонистов. Упругими элементами мышечного волокна являются коллагеновая оболочка, покрывающая плазмалемму, и, возможно, саркоплазматический ретикулум. Если с волокна снять сарколемму и заставить его сократиться, то волокно не может расслабиться спонтанно, хотя легко вытягивается до первоначальной длины при действии внешней силы.

Теории механизма мышечного сокращения

До получения данных о тонкой структуре мышц процессы мышечного сокращения пытались объяснить деформацией изолированных молекулярных цепей белков, т. е. удлинением или укорочением отдельных белковых молекул или агрегатов молекул. Часто данные о деформации различных полимеров переносили на мышечное сокращение, без учета структуры мышечных волокон.

Известно много полиэлектролитных полимерных систем, обладающих способностью к изменению длины при изменении химического состава окружающего раствора. Примером такой системы является вытянутая цепочка полиакриловой кислоты. При подкислении раствора такая цепочки сокращается, в щелочной среде она, наоборот, растягивается. Если подвесить к ней груз, то можно получить машину, совершающую механическую работу при изменении рН раствора. Существуют также редокс-модели и ионные модели мышц, в которых факторами сокращения являются соответственно изменения редокс-потенциала и концентрации свободных ионов.

Во всех этих моделях изменение длины полимеров происходит в основном в результате изменения электростатического взаимодействия между звеньями полимера или между витками спирали и случае спиральных структур.

Существует множество гипотез, пытающихся объяснить мышечное сокращение на основе свойств индивидуальных молекулярных цепей сократительных белков. Все эти гипотезы исходят из представления, что в основе сокращения мышцы лежат процессы конформационных изменений структуры белковых цепей. Так, Мейер еще в 1929 г. выдвинул гипотезу, согласно которой мышечное сокращение обусловлено деформацией пептидных цепей вследствие изменения электростатического взаимодействия ионогенных групп СООН и NH 2 при изменении рН.

В настоящее время считают, что изменение рН при возбуждении миофибрилл недостаточно, чтобы вызвать конформационныепереходы белков, по может быть достаточно для освобождения ионов кальция, которые уже могут вызвать деформацию белковой цепи.

Согласно другому представлению, акт сокращения представляет собой конформационный переход белковой структуры от α-конфигурации, когда нити линейно вытянуты, к β-конфигурации, когда нити собраны в клубок.

Однако эти гипотезы не смогли объяснить реальную картину сложного строения мышечного волокна на молекулярном уровне, полученную в последнее время. Возможно, что при медленном сокращении гладких мышц происходит фактическая деформация (активное сокращение отдельных протофибрилл) белковых цепей, как считает Г.М.Франк, однако для сокращения скелетных мышц гораздо более обоснованными являются представления, исходящие из гипотезы скольжения нитей.

Г.Хаксли и Хэнсон выдвинули гипотезу скольжения нитей. Ими было отмечено, что в широком интервале деформаций как при сокращении, так и при растяжении миофибрилл ширина А-диска остается постоянной. Напротив, при изменении длины саркомера изменяется ширина I-диска. Светлая Н–зона в А-диске также изменяется, но замечательно, что до тех пор, пока она существует, расстояние от конца одной Н-зоны через Z-мембрану до начала следующей Н-зоны (а это расстояние равно длине тонких нитей в миофибрилле) также остается постоянным. Если вспомнить, что А-диски образованы нитями миозина, а тонкие нити состоят их актина, то можно заключить, что в большой области деформаций мышцы длина миозиновых и актиновых нитей остается постоянной. Это можно объяснить только тем, что при сокращении мышцы нити просто скользят друг относительно друга без изменения своей длины.

При сильном сокращении мышцы в середине А-диска появляется плотная зона, причем ширина этой зоны увеличивается по мере сокращения мышцы. Эта плотная зона появляется после полного исчезновения Н-зоны. Уменьшение Н-зоны при сокращении вызывается скольжением тонких нитей навстречу друг другу к центру А-диска. Измерив расстояние от Z-мембраны до противолежащего конца ноной плотной зоны (полосы сокращения), Г. Хаксли и Хчпсоп обнаружили, что оно равно половине длины тонкой протофибриллы. На этом основании они предположили, что новая зона соответствует тому участку саркомера, где концы противолежащих тонких нитей перекрываются друг с другом. Это предположение подтвердилось тем, что на микрофотографии поперечного среза мышцы в области новой плотной зоны было обнаружено в 2 раза больше тонких нитей, чем в остальной области А-диска. Кроме того, при сильном сокращении мышцы, после исчезновения I-диска в области Z-мембран также появляются темные полосы. Это объясняется тем, что миозиновые нити достигают Z-мембран и после этого происходит их деформация.

В дальнейшем данные электронного микроскопирования были подтверждены результатами рентгеноструктурного анализа. Основные рефлексы рентгенограммы не изменяются при сокращении мышц. Это указывает на то, что длина нитей при сокращении не меняется. Приведенные данные очень важны, так как в отличие от электронно-микроскопических исследований, проводимых на фиксированных препаратах мышц, рентгенографические исследования проводились и на живых сокращающихся мышцах, и на нефиксированных ее препаратах.

Перемещение тонких нитей относительно толстых происходит, при помощи мостиков, соединяющих миозиновые нити с актиновыми. Так как изменений в длине толстых и топких нитей во время сокращения не происходит, то из модели скольжения нитей вытекает, что конформационные изменения, порождающие движение, должны происходить в указанных мостиках, связывающих толстые и тонкие нити. Весь процесс сокращения имеет циклический характер. Миозиновые мостики прикрепляются к активным участкам актиновых нитей и под действием энергии гидролиза АТФ укорачиваются или изменяют угол наклона к миозиновым нитям, что приводит к определенному перемещению нитей друг относительно друга. Затем происходит отсоединение мостиков в данных участках актиновых нитей и присоединение их в новых участках. Этот циклический процесс повторяется многократно, в результате чего происходит непрерывное перемещение нитей друг относительно друга. Рентгенографические исследования подтвердили предположение о движении мостиков. По мнению Г.Хаксли, расщепление одной молекулы АТФ приводит к одному замыканию и размыканию мостиков и к перемещению нитей на один элементарный участок.

Величина напряжения, развиваемого мышцей, определяется количеством замыкаемых (функционирующих) мостиков. Если мышца преодолевает при сокращении внешнюю силу, то замыкается такое количество мостиков, которое необходимо для уравновешивания этой силы. Максимальная сила, развиваемая мышцей, определяется количеством мостиков, которые могут замыкаться в данных условиях. Исходя из этих представлений, нетрудно объяснить обратную зависимость напряжения, развиваемого мышцей при сокращении, от скорости сокращения. Для того чтобы мостики замкнулись, необходимо какое-то время. При увеличении скорости скольжения нитей количество замыкаемых мостиков уменьшается, что обусловливает уменьшение напряжения, развиваемого мышцей.

В зависимости от длины саркомеров длина участков, в которых нити актина и миозина перекрываются друг с другом, будет различной и, следовательно, будет различно количество мостиков, участвующих и создании напряжения, развиваемого мышцей. Учитывая, что максимальная сила миофибриллы определяется количеством функционирующих мостиков, следует ожидать, что максимальная сила изометрического сокращения миофибриллы будет изменяться с изменением длины саркомера. При длине саркомера 3,65 мкм нити актина и миозина уже не накладываются друг на друга и можно ожидать, что волокно не будет способно развивать силу. Под силой сокращения следует понимать разность между общей силой, развиваемой при раздражении мышцей, и упругой восстанавливающей силой, обусловленной эластическими элементами мышцы в случае се растяжения сверх нормальной длины. По мере сближения Z-мембран нити актина все глубже проникают в промежутки между нитями миозина и, наконец, при расстоянии 2,2 мкм все мостики миозиновых нитей приходят в контакт с нитью актина. Если именно эти мостики ответственны за возникновение силы, то следует ожидать, что в диапазоне от положения I до положения II сила будет пропорциональна степени перекрывания нитей. При дальнейшем укорочении волокна число мостиков, которые могут замыкаться, не изменяется и сила должна оставаться постоянной, пока длина саркомера не уменьшится до 2,05 мкм. В этот момент нити актина сходятся своими концами и сила должна убывать вследствие того, что тонкие нити, которые проникли дальше середины А-диска, будут неправильно ориентированы по отношению к миозиновым мостикам. Сила должна постепенно убывать, пока расстояние не достигнет 1,65 мкм, когда концы миозиновых нитей приходят в соприкосновение с Z-мембранами. При дальнейшем сокращении нити миозина должны деформироваться; сила должна убывать быстрее и совсем исчезать, когда актиновые нити доходят до противолежащих Z-мембран.

Все эти предположения подтвердились экспериментально. Гордоном, А.Хаксли, Юлианом (1966) измерялось напряжение, развиваемое мышечным волокном при изометрическом сокращении, и одновременно методом фазово-контрастной микроскопии регистрировалась длина саркомера.

Однако, несмотря на большие успехи в изучении механизма мышечного сокращения, все еще окончательно не установлен механизм работы мостиков, в результате которой энергия гидролиза АТФ превращается в механическую работу.

В настоящее время имеется ряд гипотез, пытающихся объяснить конкретный механизм взаимодействия актиновых и миозиновых нитей.

Наиболее глубоко разработанной и обоснованной является гипотеза Дэвиса. Согласно этой гипотезе, мостик между миозиновой и актиновой нитями образован полипептидными цепочками конца миозиновой молекулы, скрученными в спираль. В покое мостик вытянут-спираль находится в растянутом состоянии. Это обусловлена электростатическим отталкиванием двух отрицательных зарядов. Один из них находится в фиксированном состоянии у основания мостика, которое обладает АТФ-азной активностью. Другой отрицательный заряд локализован па конце мостика, с которым связана молекула АТФ.

При возбуждении мышцы саркоплазматический ретикулум освобождает ионы кальция. Они образуют связь между молекулой АТФ, находящейся на конце мостика, и молекулой АДФ, расположенной на актиновой нити, что вызывает нейтрализацию отрицательных зарядов. Электростатическое отталкивание исчезает и растянутая цепочка - мостик - скручивается в α-спираль благодаря образованию водородных связей. Этот процесс представляет собой освобождение потенциальной энергии, запасенной вытянутой полипептидной цепочкой при первоначальном отталкивании зарядов. Укорочение полипептидной цени с образованием α-спирали приводит к двум эффектам. Во-первых, актиновая нить перемещается относительно миозиновой на один шаг; во-вторых, присоединенная молекула АТФ перемещается в область гипотетического АТФ-азного центра. Благодаря соответствующему расположению этого центра и наклону мостиков относительно толстой нити актиновые нити перемещаются в сторону М-линий. После этого АТФ расщепляется на АДФ и минеральный фосфат, что ведет к разрыву связей между актином и миозином. На место молекулы АДФ в миозиновом мостике из саркоплазмы поступает новая молекула АТФ, которая отталкивается отрицательным фиксированным зарядом миозина. В результате этого α-спираль растягивается – мостик удлиняется. Если в саркоплазме в это время имеются свободны ионы кальция, то весь цикл повторяется сначала.

При этом во взаимодействии участвует уже следующий участок активной нити. Если же ионы кальция к этому времени удалены из саркоплазм, то волокно расслабляется.

Модель Дэвиса получила ряд дополнений и подверглась модификациям. Бендолл (1970) предполагает, что присоединение ионов кальция в области мостиков приводит к изменению электрического взаимодействия. Нейтрализация отрицательных зарядов и присоединение актина к миозину обусловливают превращение спирали полипептидной цепочки (мостика) молекулы миозина в более беспорядочную, сильно свернутую конформацию но типу перехода «спираль - клубок».

Такой переход сопровождаемся освобождением потенциальной (свободной) энергии, запасенном и более упорядоченной структуре - спирали.

Эта энергия частично расходуется на тянущее усилие- перемещение нити актина на один шаг, а частично деградирует в тепло. Изменение конформации мостика одновременно вызывает сближение АТФ с АТФ-азным участком миозина, что вызывает гидролиз АТФ.

Часть освободившейся энергии рассеивается в виде тепла, а часть ее идет на восстановление спиральной конфигурации мостика, который выпрямляется по мере ресинтеза АТФ или поступления новых молекул АТФ извне. Актомиозиновый комплекс распадается и цикл может повториться, если в системе присутствуют ионы кальция.

При отсутствии в системе молекул АТФ она будет находиться в состоянии окоченения - молекулы актина будут оставаться присоединенными к связывающим центрам миозина.

При очень сильных мышечных сокращениях отмечается не только продвижение актиновых нитей, но и укорочение саркомеров в целом.



рис. 2.4. Электрическое раздражение и мышечный ответ. Сверху показаны электрические импульсы, снизу - ответ мышцы

Если стимулировать коротким электрическим импульсом, спустя небольшой латентный период происходит ее . Такое сокращение называется «одиночное сокращение мышцы». Одиночное мышечное сокращение длится около 10-50 мс, причем оно достигает максимальной силы через 5-30 мс.

Каждое отдельное мышечное волокно подчиняется закону «все или ничего», т. е. при силе раздражения выше порогового уровня происходит полное сокращение с максимальной для данного волокна силой, а ступенчатое повышение силы сокращения по мере увеличения силы раздражения невозможно. Поскольку смешанная мышца состоит из множества волокон с различным уровнем чувствительности к возбуждению, сокращение всей мышцы может быть ступенчатым в зависимости от силы раздражения, при этом при сильных раздражениях происходит активация глубжележащих мышечных волокон.

Суперпозиция и тетанус

Однократное электрическое раздражение (рис. 2.4, вверху) ведет к единичному мышечному сокращению (рис. 2.4, внизу). Два близко друг за другом следующих раздражения накладываются друг на друга (это называется «суперпозиция», или суммация сокращений), что ведет к более сильному мышечному ответу, близкому к максимальному. Серия часто повторяющихся электрических раздражений вызывает возрастающие по силе мышечные сокращения, в результате чего не происходит должного расслабления мышцы. Если частота электрических импульсов выше частоты слияния, то единичные раздражения сливаются в одно и вызывают тетанус мышцы (тетаническое сокращение) - устойчивое достаточно длительное напряжение сокращенной мышцы.

Формы сокращений

Рис. 2.5. Формы мышечных сокращений. Слева схематически представлено укорочение саркомеров, в середине - изменения силы и длины, справа - пример сокращений

Выделяют различные функциональные формы мышечных сокращений (рис. 2.5).

  • При изотоническом сокращении мышца укорачивается, однако ее внутреннее напряжение (тонус!) остается неизменным во всех фазах рабочего цикла. Типичным примером изотонического мышечного сокращения является динамическая мышечная работа сгибателей и разгибателей без существенных изменений внутримышечного напряжения, например подтягивание.
  • При изометрическом сокращении мышечная длина не изменяется, а сила мышцы проявляется в повышении ее напряжения. Типичным примером изометрического сокращения является статическая мышечная активность при поднимании тяжестей (удерживание штанги).
  • Чаще всего наблюдаются комбинированные варианты сокращения мышц. Например, комбинированное сокращение, при котором мышцы сначала сокращаются изометрически, а затем изотонически, как при поднятии тяжести, называют удерживающим сокращением .
  • Установочным (изготовочным) называют сокращение, при котором, наоборот, после начального изотонического сокращения следует изометрическое. Примером является ротационное движение руки с рычагом - затягивание винта с помощью гаечного ключа или отвертки.
  • Различные формы мышечных сокращений выделяют для их описания и систематизации. На самом деле в большинстве динамических спортивных движений происходит как укорочение мышцы, так и повышение напряжения (тонуса) мышц - ауксотонические сокращения .

Использованные здесь термины нетипичны для русской литературы по мышечной активности. В отечественной литературе принято выделять следующие типы сокращений.

  • Концентрическое сокращение - вызывающее укорачивание мышцы и перемещение места прикрепления ее к кости, при этом движение конечности, обеспечиваемое сокращением данной мышцы, направлено против преодолеваемого сопротивления, например силы тяжести.
  • Эксцентрическое сокращение - возникает при удлинении мышцы во время регулирования скорости движения, вызванного другой силой, или в ситуации, когда максимального усилия мышцы не хватает для преодоления противодействующей силы. В результате движение происходит в направлении воздействия внешней силы.
  • Изометрическое сокращение - усилие, противодействующее внешней силе, при котором длина мышцы не изменяется и движения в суставе не происходит.
  • Изокинетическое сокращение - сокращение мышцы с одинаковой скоростью.
  • Баллистическое движение - быстрое движение, включающее: а) концентрическое движение мышц-агонистов в начале движения; б) инерционное движение во время минимальной активности; в) эксцентрическое сокращение для замедления движения.

Механизм скольжения филаментов

рис. 2.6 Схема образования поперечных связей - молекулярной основы сокращения саркомера

Укорочение мышцы происходит за счет укорочения образующих ее саркомеров, которые, в свою очередь, укорачиваются за счет скольжения относительно друг друга актиновых и миозиновых филаментов (а не укорочения самих белков). Теория скольжения филаментов была предложена учеными Huxley и Hanson (Huxley, 1974; рис. 2.6). (В 1954 г. две группы исследователей - X. Хаксли с Дж. Хэнсон и А. Хаксли с Р. Нидергерке - сформулировали теорию, объясняющую мышечное сокращение скольжением нитей. Независимо друг от друга они обнаружили, что длина диска А оставалась постоянной в расслабленном и укороченном саркомере. Это позволило предположить, что есть два набора нитей - актиновые и миозиновые, причем одни входят в промежутки между другими, и при изменении длины саркомера эти нити каким-то образом скользят друг по другу. Сейчас эта гипотеза принята почти всеми.)

Актин и миозин - два сократительных белка, которые способны вступать в химическое взаимодействие, приводящее к изменению их взаимного расположения в мышечной клетке. При этом цепочка миозина прикрепляется к актиновой нити с помощью целого ряда особых «головок», каждая из которых сидит на длинной пружинистой «шее». Когда происходит сцепление между миозиновой головкой и актиновой нитью, конформация комплекса этих двух белков изменяется, миозиновые цепочки продвигаются между актиновыми нитями и мышца в целом укорачивается (сокращается). Однако, чтобы химическая связь между головкой миозина и активной нитью образовалась, необходимо подготовить этот процесс, поскольку в спокойном (расслабленном) состоянии мышцы активные зоны белка актина заняты другим белком - тропохмиозином, который не позволяет актину вступить во взаимодействие с миозином. Именно для того, чтобы убрать тропомиозиновый «чехол» с актиновой нити, требуется быстрое выливание ионов кальция из цистерн саркоплазматического ретикулума, что происходит в результате прохождения через мембрану мышечной клетки потенциала действия. Кальций изменяет конформацию молекулы тро-помиозина, в результате чего активные зоны молекулы актина открываются для присоединения головок миозина. Само это присоединение осуществляется с помощью так называемых водородных мостиков, которые очень прочно связывают две белковые молекулы - актин и миозин - и способны в таком связанном виде находиться очень долго.

Для отсоединения миозиновой головки от актина необходимо затратить энергию аденозинтрифосфа-та (АТФ), при этом миозин выступает в роли АТФазы (фермента, расщепляющего АТФ). Расщепление АТФ на аденозиндифосфат (АДФ) и неорганический фосфат (Ф) высвобождает энергию, разрушает связь между актином и миозином и возвращает головку миозина в исходное положение. В дальнейшем между актином и миозином могут снова образовываться поперечные связи.

При отсутствии АТФ актин-миозиновые связи не разрушаются. Это и является причиной трупного окоченения (rigor mortis) после смерти, т. к. останавливается выработка АТФ в организме - АТФ предотвращает мышечную ригидность.

Даже при мышечных сокращениях без видимого укорочения (изометрические сокращения, см. выше) активируется цикл формирования поперечных связей, мышца потребляет АТФ и выделяет тепло. Головка миозина многократно присоединяется на одно и то же место связывания актина, и вся система миофиламентов остается неподвижной.

Внимание : Сократительные элементы мышц актин и миозин сами по себе не способны к укорочению. Мышечное укорочение является следствием взаимного скольжения миофиламентов относительно друг друга (механизм скольжения филаментов).

Как же образование поперечных связей (водородных мостиков) переходит в движение? Одиночный саркомер за один цикл укорачивается приблизительно на 5-10 нм, т.е. примерно на 1 % своей общей длины. За счет быстрого повторения цикла поперечных связей возможно укорочение на 0,4 мкм, или 20% своей длины. Поскольку каждая миофибрилла состоит из множества саркомеров и во всех них одновременно (но не синхронно) образуются поперечные связи, суммарно их работа приводит к видимому укорочению всей мышцы. Передача силы этого укорочения происходит через Z-линии миофибрилл, а также концы сухожилий, прикрепленных к костям, в результате чего и возникает движение в суставах, через которые мышцы реализуют перемещение в пространстве частей тела или продвижение всего тела.

Связь между длиной саркомера и силой мышечных сокращений

Рис. 2.7. Зависимость силы сокращений от длины саркомера

Наибольшую силу сокращений мышечные волокна развивают при длине 2-2,2 мкм. При сильном растяжении или укорочении саркомеров сила сокращений снижается (рис. 2.7). Эту зависимость можно объяснить механизмом скольжения филаментов: при указанной длине саркомеров наложение миозиновых и актиновых волокон оптимально; при большем укорочении миофиламенты перекрываются слишком сильно, а при растяжении наложение миофиламентов недостаточно для развития достаточной силы сокращений.

рис. 2.9 Влияние предварительного растяжения на силу сокращения мышцы. Предварительное растяжение повышает напряжение мышцы. Результирующая кривая, описывающая взаимоотношения длины мышцы и силы ее сокращения при воздействии активного и пассивного растяжения, демонстрирует более высокое изометрическое напряжение, чем в покое

Важным фактором, влияющим на силу сокращений, является величина растяжения мышцы. Тяга за конец мышцы и натяжение мышечных волокон называются пассивным растяжением. Мышца обладает эластическими свойствами, однако в отличие от стальной пружины зависимость напряжения от растяжения не линейна, а образует дугообразную кривую. С увеличением растяжения повышается и напряжение мышцы, но до определенного максимума. Кривая, описывающая эти взаимоотношения, называется кривой растяжения в покое .

Данный физиологический механизм объясняется эластическими элементами мышцы - эластичностью сарколеммы и соединительной ткани, располагающимися параллельно сократительным мышечным волокнам.

Также при растяжении изменяется и наложение друг на друга миофиламентов, однако это не оказывает влияния на кривую растяжения, т. к. в покое не образуются поперечные связи между актином и миозином. Предварительное растяжение (пассивное растяжение) суммируется с силой изометрических сокращений (активная сила сокращений).

Рассмотрим, к чему сводятся представления о механизме попеременного сокращения и расслабления мышц. В настоящее время принято считать, что биохимический цикл мышечного сокращения состоит из 5 стадий (рис. 20.8):

1) миозиновая «головка» может гидролизовать до и Н 3 РО 4 (P i), но не обеспечивает освобождения продуктов . Поэтому данный процесс носит скорее стехиометрический, чем каталитический, характер (см. рис. 20.8, а);

По современным представлениям, в покоящейся мышце (в миофибрил-лах и межфибриллярном пространстве) Са 2+ поддерживается ниже пороговой величины в результате связывания их структурами (трубочками и пузырьками) саркоплазматической сети и так называемой Т-системой при участии особого Са 2+ -связывающего , получившего название кальсеквестрина, входящего в состав этих структур.

Возможность пребывания живой мышцы в расслабленном состоянии при наличии в ней достаточно высокой объясняется снижением в результате действия кальциевой помпы Са 2+ в среде, окружающей миофибриллы, ниже того предела, при котором еще возможны проявление АТФазной и сократимость акто-миозиновых структур волокна. Быстрое сокращение мышечного волокна при его раздражении от нерва (или электрическим током) является результатом внезапного изменения проницаемости и как следствие выхода из цистерн и трубочек саркоплазматической сети и Т-системы некоторого количества Са 2+ в саркоплазму.

Как отмечалось, «чувствительность» актомиозиновой системы к Са 2+ (т.е. потеря способности расщеплять и сокращаться в присутствии при снижении Са 2+ до 10 –7 М) обусловлена присутствием в контрактильной системе (на нитях F-акти-на)

В основе мышечного сокращения лежит перемещение нитей актина относительно нитей миозина. Нити актина двигаются, как по туннелю, между миозиновыми фибриллами, за счет образования связей с миозином. В результате этого сарко- мер укорачивается (гипотеза «скользящих нитей» А. Хаксли) (рис. 7.29). При этом длина 1-дисков уменьшается, А-диски сохраняют свой размер.

Скольжение актиновых и миозиновых нитей друг относительно друга возможно только в присутствии ионов Са 2+ и АТФ, которая образуется при расщеплении гликогена, глюкозы и жирных кислот. Мышцы характеризуются активным обменом веществ. К ним подходит большое количество кровеносных и лимфатических сосудов, а также нервов. Последние образуют с мышечными волокнами синаптические контакты.

Всю цепь событий при мышечном сокращении можно представить следующим образом: в нервно-мышечном синапсе под влиянием приходящих из ЦНС но нервному волокну импульсов выделяется медиатор ацетилхолин , деполяризующий мембрану мышечного волокна. Возникающий при этом импульс распространяется по мембране волокна и Т-трубочкам и передается на мембрану саркоплазматического ретикулума, из которого в саркоплазму выходит кальций. Ионы кальция способствуют образованию комплекса акто- миозина и расщеплению АТФ; освобождающаяся при этом энергия обеспечивает скольжение тонких актиновых нитей вдоль миозиновых.

Рис. 7.29.

Изменение взаиморасположения миофибрилл при расслаблении (б) и сокращении (в) мышечного волокна

Расслабление мышцы связано с обратным поступлением Са 2+ в саркоплазматический ретикулум, что происходит при участии активных механизмов, связанных с работой ионных насосов. Если концентрация ионов кальция в саркоплазме снижается и они перекачиваются в эндоплазматическую сеть, то сокращение мышечного волокна прекращается.

Скелетная мускулатура человека состоит из мышечных волокон нескольких типов с различными структурно-функциональными характеристиками. Выделяют четыре основных типа мышечных волокон: медленные фазические волокна окислительного типа, быстрые фазические волокна окислительного типа, быстрые фазические окислительные волокна с гликолитическим типом окисления и тонические волокна.

Медленные фазические мышечные волокна окислительного типа содержат большое количество белка миоглобина, связывающего 0 2 . Этот белок аналогичен гемоглобину эритроцитов и придает мышечным волокнам темно-красную окраску. Мышцы, состоящие преимущественно из этих волокон, участвуют в поддержании позы человека. Утомление в них развивается очень медленно, а восстанавливаются функции очень быстро.

Мышцы, состоящие преимущественно из быстрых фази- ческих волокон окислительного типа , выполняют быстрые сокрашения без заметного утомления. Это связано с наличием в волокнах большого количества митохондрий и хорошей способностью синтезировать АТФ. Основное назначение таких волокон - выполнение быстрых, энергичных движений.

Тонические волокна сокращаются и расслабляются медленно, так как активность АТФ в них низка. Такие волокна входят в состав некоторых мышц глаза.

Большинство скелетных мышц человека состоит из мышечных волокон различных типов с преобладанием одного из них в зависимости от функций, которые выполняет та или иная мышца.

Основное физиологическое свойство мышц - сократимость - проявляется в способности мышцы к укорачиванию или развитию напряжения. Различают два типа мышечных сокращений - изотонические и изометрические. При изотоническом сокращении волокна мышцы укорачиваются, но напряжение остается постоянным. При изометрическом - мышца укоротиться не может, длина мышечных волокон остается неизменной, так как оба се конца неподвижно закреплены, но напряжение по мере их сокращения возрастает.

По отношению к целому организму применяется иная классификация типов сокращения: изометрическим называют сокращение, при котором длина мышцы не меняется, концентрическим - при котором мышца укорачивается, эксцентрическим - удлиняется (например, при медленном опускании груза). Для естественных движений обычно характерны все три типа сокращения мышц.

Функциональной единицей скелетной мускулатуры считается не отдельное мышечное волокно, а нейромоторная , или двигательная единица , которая включает несколько мышечных волокон, иннервируемых мотонейроном спинного мозга (рис. 7.30, 7.31). В ответ на импульсы, приходящие от мотонейрона, сокращаются все мышечные волокна, входящие в нейромоторную единицу.

Число мышечных волокон, составляющих двигательную единицу, скорость их сокращения и устойчивость к утомлению неодинаковы. В зависимости от их свойств двигательные единицы подразделяют на быстрые (фазные) } медленные (тониРис. 7.30. Двигательные единицы

ческиё) и переходные. Двигательные единицы каждой мышцы неодинаковы. Мышцы, обеспечивающие точные и быстрые движения (например, мышцы пальцев руки), состоят в основном из нескольких сотен или тысяч быстрых двигательных единиц. В большинстве мышц смешанного типа первыми активизируются медленные двигательные единицы, развивающие


Рис. 7.31

а,6 - нервно-мышечный синапс; в - электронная сканирующая

микроскопия небольшую силу сокращения, а при увеличении возбуждения в сокращение вовлекаются мышечные волокна, развивающие большую силу. Активация быстрых нсйромогорных единиц обеспечивает точную двигательную реакцию.

В естественных условиях к мышце из ЦНС поступают не одиночные импульсы, а серии импульсов, на которые она реагирует не одиночным, а длительным (тетаническим ) сокращением. Оно обусловлено тем, что каждый следующий импульс приходит в момент, когда еще не закончилась предыдущая волна сокращения. Последняя, суммируясь с предыдущей, продлевает сокращение мышцы. Если каждая новая волна сокращения возникает в момент, когда мышца уже начала расслабляться под влиянием предшествующего раздражения, возникает зубчатый тетанус. При меньшем интервале между раздражениями, когда каждая новая волна сокращения возникает до начала мышечного расслабления, образуется сплошной, или гладкий , тетанус. Отдельные волокна мышцы при ее естественной стимуляции с нерва отвечают на каждый импульс одиночным сокращением. Слитный тетанус получается за счет суммации сокращений отдельных мышечных волокон. Обычно мышечные волокна одной мышцы сокращаются не одновременно, так как импульсы от различных мотонейронов ЦНС также приходят к ним не одновременно. Это способствует образованию и поддержанию слитного тетаничес- кого сокращения мышцы.

Сокращаясь, мышца выполняет работу. Работа мышц зависит от силы их сокращения, а сила сокращения одной и той же мышцы - от количества нейромоторных единиц, участвующих в нем. Чем их больше, тем сокращение интенсивнее. Сила сокращения также зависит от частоты раздражения. До известного предела увеличение частоты стимуляции сопровождается возрастанием силы мышечного сокращения. Это связано с тем, что с увеличением частоты раздражения в реакцию включается все большее количество мышечных волокон. Максимальное напряжение, которое может развить мышца, определяется числом образующих ее волокон: чем оно больше, тем больше сила мышц. В связи с этим перистые мышцы, состоящие из множества волокон, отличаются большей силой.

Проявление силы мышцы зависит и от особенностей ее прикрепления к костям. Мышцы с большей площадью прикрепления или опоры, имеют большие возможности для проявления силы. Важно также и место приложения силы мышц. Кости вместе с прикрепляющимися к ним мышцами являются рычагами, поэтому чем ближе к точке приложения силы тяжести или чем дальше от точки опоры рычага и ближе к точке приложения силы тяжести прикрепляется мышца, тем большую силу она может развить (рис. 7.32).

Зависимость мышечной силы от таких факторов отчетливо проявляется в деятельности мышц верхней и нижней конечностей. Верхняя конечность предназначена для выполнения разнообразных точных и быстрых движений. Функция нижних конечностей требует большой силы их мышц. Этим функциональным задачам соответствует и характер прикрепления соответствующих мышц. Так, дельтовидная мышца, расположенная в области плечевого сустава, имеет небольшую поверхность опоры и прикрепляется на плечевой кости вблизи от места опоры рычага. У мышц нижних конечностей площадь опоры велика и точка приложения силы находится далеко от точки опоры. У ягодичной мышцы площадь опоры в 23 раза больше, чем у дельтовидной, а площадь прикрепления - больше в 4,5 раза.

Между силой мышцы и величиной ее укорочения нет прямо пропорциональной зависимости. Максимальное укорочение мышцы, а следовательно, и интенсивность сокращения, вызываемого этим укорочением движения, в том или ином суставе зависит от длины мышечных волокон. Она наибольшая в мышцах с параллельным расположением волокон, в то время как большей силой обладают перистые мышцы. Первоначально растянутая мышца при сокращении укорачивается на большую величину.

Работа мышцы при сокращении равна произведению массы груза на поднятую высоту. Отсюда следует, что максимальная работа, выполняемая при одиночном сокращении мышцы, зависит от ее силы (чем больше сила, тем больший груз может быть поднят) и степени укорочения мышцы. В про-


Рис. 732.

а - рычаг равновесия; б - рычаг скорости. Треугольник - точка опоры; темные стрелки показывают направление сил мышечной тяги; пунктирные стрелки - направление силы тяжести; пунктирная стрелка - движение цессе естественной деятельности человека величина работы, выполняемой той или иной мышцей, в значительной степени зависит от се способности длительно находиться в сокращенном состоянии (выносливость мышц). Различают выносливость к статическим и динамическим усилиям. Выносливость к статическим усилиям определяется временем, в течение которого удерживается величина заданного усилия. У разных мышц она неодинакова. Наименьшей выносливостью характеризуется трехглавая мышца плеча (1 мин - при усилии, равном 50% максимального), наибольшей - икроножная мышца (7 мин).

Выносливость к длительной работе зависит не только от величины поднимаемого груза, но и от темпа работы. Работа бывает наибольшей при какой-то средней величине груза и частоте движений. Для каждого вида мышечной деятельности можно подобрать некоторый средний (оптимальный) ритм и величину нагрузки, при которой работа станет максимальной, а утомление будет развиваться постепенно.

Работа мышц - необходимое условие их сокращения. Длительная бездеятельность ведет к атрофии мышц и потере работоспособности. Умеренная систематическая работа мышц способствует увеличению их объема, возрастанию силы и работоспособности, что важно для физического развития всего организма.

При длительной динамической или статической работе наступает утомление мышц. Утомлением называют временное понижение работоспособности клетки, органа или целостного организма, наступающее в результате работы и исчезающее после отдыха. В естественных условиях утомление связано, прежде всего, с изменениями, происходящими в нервной системе, в частности с нарушением проведения возбуждения в межнейрональных и нервно-мышечных синаптических контактах. Скорость наступления утомления зависит от состояния нервной системы, ритма, в котором производится работа, и от величины нагрузки. После отдыха работоспособность восстанавливается. И. М. Сеченов впервые (в 1903 г.) показал, что восстановление работоспособности утомленных мышц руки человека после длительной работы по подъему груза происходит быстрее, если в период отдыха производить работу другой рукой или ногой. Такой отдых был назван активным.

Чередование умственного и физического труда, динамические паузы до и во время занятий способствуют повышению работоспособности детей и взрослых. Чем меньше ребенок, тем быстрее у него развивается утомление. В грудном возрасте утомление наступает через 1,5-2 часа обычного бодрствования. Дети утомляются и при неподвижности или длительном ограничении движений.

Мышцы человека даже в покое находятся в несколько сокращенном состоянии. Длительное удерживание напряжения называют мышечным тонусом . Во время сна или при наркозе тонус мышц снижается и вследствие этого тело расслабляется. Тонические сокращения мышц не приводят к развитию утомления. Полное исчезновение тонуса мышц наблюдается только после смерти. Сохранение тонуса обусловлено постоянным поступлением к мышце следующих друг за другом с большими интервалами нервных импульсов от двигательных нейронов Ц11С. Активность этих нейронов поддерживается импульсами, поступающими из вышележащих отделов ЦНС и от рецепторов мышц - мышечных веретен.

Тонус мышц играет важную роль в осуществлении координации движений. У новорожденных и грудных детей преобладает тонус мышц-сгибателей, обусловленный повышенной возбудимостью красного ядра среднего мозга. По мере функционального созревания пирамидной системы мозга и нейронов коры больших полушарий тонус мышц у детей снижается. Это четко проявляется во втором полугодии жизни ребенка и является необходимым условием для развития ходьбы. К трем - пяти годам устанавливается равновесие тонуса мышц-аитагонистов.