Лучшая система подтягиваний на турнике. Схема подтягиваний на турнике для роста мышц

БИОТО́ПЛИВО (биологическое топливо), топливо из растительного или животного сырья, из продуктов жизнедеятельности организмов или органических промышленных отходов, получаемое из биомассы термохимическим или биологическим способом. Биотопливо классифицируют по агрегатному состоянию и поколениям. По агрегатному состоянию различают жидкую биомассу (обычно применяют для двигателей внутреннего сгорания); твёрдое биотопливо (способно гореть при условии, что топливо состоит из горючего, например дерева, и окислителя, которым часто служит кислород воздуха); газообразное – биогаз (газ, получаемый брожением биомассы), биоводород, метан. Биотопливо, как правило, делится на первичное и вторичное. Первичное биотопливо используется в необработанном виде, в первую очередь для отопления, приготовления пищи и электричества; в основном это топливная древесина, каменный уголь. Вторичное биотопливо можно условно разделить на три поколения (на основе различных параметров, типа технологии обработки, исходного сырья и др.); производится путём переработки биомассы и используется на транспортных средствах, в различных промышленных процессах и др.

Биотопливо первого поколения производится из традиционных сельскохозяйственных культур с высоким содержанием жиров, крахмала, сахаров посредством применения технологий, близких к естественным биологическим и термохимическим процессам (например, брожение). Однако это сырьё используется в пище людей и животных. Т. о., помимо затратного землепользования (необходимость использования качественных пахотных земель) с истощением почв и высокими потребностями в их обработке, изъятие этого сырья с рынка прямо повлияет на цену пищевых продуктов (основной недостаток производства биотоплива первого поколения). Условная эффективность производства биотоплива из биомассы первого поколения составляет примерно 35–45%.

Биотопливо второго поколения получают из непищевого сырья (отработанные жиры и растительные масла, биомасса деревьев и растений) разными методами. Такое сырьё содержит целлюлозу и лигнин. Технологически производство биотоплива второго поколения представляет собой процесс получения топлива посредством переработки целлюлозы и лигнина, содержащихся в древесной или волокнистой биомассе, что менее затратно, чем получение биотоплива у культур первого поколения. Его можно прямо сжигать (как это традиционно делали с дровами), газифицировать (получая горючие газы), осуществлять пиролиз , который позволяет превратить биомассу в жидкость. Из жидкости можно сделать автомобильное топливо или топливо для электростанций. Сырьём для подобного производства может быть любая биомасса, включая отходы деревообрабатывающего производства и остатки пищи. Основной источник сырья второго поколения – растения: водоросли, простые живые организмы, приспособленные к росту и размножению в загрязнённой или солёной воде (содержат до двухсот раз больше масла, чем источники первого поколения, такие как соевые бобы); рыжик (растение), растёт в ротации с пшеницей и другими зерновыми культурами; ятрофа (Jatropha curcas ), растёт в засушливых почвах, содержит масла от 27 до 40% в зависимости от вида. Условная эффективность производства биотоплива из биомассы второго поколения составляет примерно 50%. Производство биотоплива второго поколения в настоящий момент является очень капиталоёмким процессом, т. к. соответствующие технологии весьма дороги.

Биотопливо третьего поколения получают из водорослей (не требуют земельных ресурсов, имеют большую концентрацию биомассы и высокую скорость воспроизводства). Перспективность этого направления развития связана со спецификой состава водорослей (в штамме водорослей содержание жиров составляет от 75 до 85% сухого веса). Водоросли рассматривают как наиболее перспективное сырьё для производства топлива из возобновляемых источников. По оценкам специалистов, из водорослей, растущих на прудах суммарной площадью 200 тысяч га, можно производить топливо, достаточное для годового потребления 5% автомобилей США (для США это 0,02% земельного фонда, для России – чуть более 0,01%). Установлено, что с 1 акра (4047 м 2) водорослей можно произвести в 30 раз больше энергии, чем с акра наземных растений, таких как, например, соя.

Жидкое (моторное) биотопливо

Вещество, получаемое в ходе переработки растительного сырья (кукурузы, рапса, сахарной свёклы, сахарного тростника и др.), отходов деревообработки средствами технологий, в основе которых лежит использование естественных биологических процессов (например, брожения). Основное применение жидкого биотоплива – двигатели. Жидкое биотопливо подразделяется на биоэтанол, биометанол, биобутанол, диметиловый эфир, биодизель.

Биоэтанол – обычный этанол, получаемый в процессе переработки растительного сырья для использования в качестве биотоплива; биотопливный заменитель бензина. Этанол в Бразилии производится преимущественно из сахарного тростника, в США – из кукурузы. Производство этанола из тростника на сегодняшний день экономически более выгодно, чем из кукурузы. Сырьём для производства биоэтанола также могут быть различные сельскохозяйственные культуры с большим содержанием крахмала или сахара: маниок, картофель, сахарная свёкла, батат, сорго, ячмень и т.д. Существует 2 основных способа получения биоэтанола – микробиологический (спиртовое брожение) и синтетический (гидратация этилена). Следствием брожения является раствор, содержащий не более 15% биоэтанола, поскольку в более концентрированных растворах дрожжи обычно гибнут. Полученный таким образом биоэтанол нуждается в очистке и концентрировании, обычно путём дистилляции. В промышленных масштабах этиловый спирт получают из сырья, содержащего целлюлозу (различные отходы сельского и лесного хозяйства – пшеничная солома, рисовая солома, древесные опилки и т. п.), которую предварительно подвергают гидролизу (см. Гидролиз растительных материалов ). Смесь, образовавшаяся при этом, подвергают спиртовому брожению. С учётом того, что ежегодно на нашей планете образуется ок. 200 млрд. т растительной целлюлозосодержащей биомассы, биосинтез целлюлозы – самый крупномасштабный синтез в настоящем и будущем. Глобальное производство этанола на 2009 составило 73,9 млрд. литров, в 2010 – 85,9 млрд. литров (на 16,2% больше, чем в 2009). В 2014 производство этанола (91,4 млрд. литров) заместило потребность, эквивалентную 430 млн. баррелей нефти. Мировым лидером в области производства биоэтанола (2014) являются США – 53,2 млрд. литров (14 млрд. галлонов).

Биометанол – обычный метанол, первый представитель гомологического ряда одноатомных спиртов, который используется в качестве биотоплива. Промышленное культивирование и биотехнологическая конверсия морского фитопланктона рассматривается как одно из наиболее перспективных направлений в области получения биотоплива. Производство биомассы для получения биометанола осуществляется путём обработки фитопланктона в специально созданных водоёмах на морском побережье. Вторичные процессы представляют собой метановое брожение биомассы и последующее гидроксилирование метана с получением метанола. Основными доводами в пользу использования микроскопических водорослей являются: высокая продуктивность фитопланктона (до 100 т/га в год); в производстве не используются плодородные почвы, пресная вода; процесс не конкурирует с сельскохозяйственным производством и др. Метанол может использоваться как в классических двигателях внутреннего сгорания, так и в специальных топливных элементах для получения электричества. Достоинства биометанола: низкий объём выбросов углекислого газа; возможность организовать переработку (рециклинг) отходов животноводства и сельского хозяйства. Недостатки: низкий энергетический кпд (максимум 68%); бесцветное пламя, что может привести к аварийным ситуациям; срок окупаемости проекта (до 20 лет); метанол травит алюминий (проблемным становится использование алюминиевых карбюраторов и инжекторных систем подачи топлива в двигателях внутреннего сгорания ). На долю транспортных средств приходится 20% совокупного потребления метилового спирта (как в чистом виде, так и в виде его производных). Помимо применения метанола в качестве альтернативы бензина, существует технология применения метанола для создания на его базе угольной суспензии, которая в США имеет коммерческое наименование «метакол» (methacoal). Такое топливо предлагается как альтернатива мазута, широко используемого для отопления зданий (топочный мазут). Такая суспензия, в отличие от водоуглеродного топлива, не требует специальных котлов и имеет более высокую энергоёмкость.

Биобутанол(бутиловый спирт, бутанол) – бесцветная жидкость, получаемая из растительного сырья, с характерным запахом сивушного масла. Энергия бутанола близка к энергии бензина. Бутанол может использоваться в топливе и также как сырьё для производства водорода. Сырьём для производства биобутанола могут быть сахарный тростник, маниока, свёкла, а в будущем и целлюлоза. В 1950-х гг. бутанол производили из нефтепродуктов. Бутанол, произведённый из биомассы, принято называть биобутанолом, хотя он имеет абсолютно те же характеристики, что и бутанол, полученный из нефти (химического сырья). Бутанол применяют как растворитель в лакокрасочной промышленности, в производстве смол и пластификаторов, в синтезе многих органических соединений, в качестве компонента к традиционным топливам или как самостоятельное топливо для транспортных средств. Но прежде всего его используют в качестве промышленного растворителя.

Диметиловый эфир – топливо, производимое из природного газа, угля, отходов целлюлозно-бумажного производства; экологически чистый продукт. Диметиловый эфир применяют очень широко, так как его использование не требует каких-то специальных очисток, но необходима переделка систем питания и зажигания двигателя внутреннего сгорания (например, возможно применение этого биотоплива на автомобилях с LPG-двигателями). Автомобили с двигателями, работающими на диметиловом эфире, разрабатывают КАМАЗ, « Volvo » , « Nissan » и китайская компания « SAIC Motor » .

Биодизель – биотопливо на основе растительных или животных жиров (масел), а также продуктов их этерификации (моноалкиловые эфиры жирных кислот). Сырьём для производства биодизеля служат жирные, реже – эфирные масла различных растений или водорослей: в Европе – рапс; США – соя; Канаде – канола (разновидность рапса); в Индонезии, на Филиппинах – пальмовое и кокосовое масло; в Индии – ятрофа; Африке – соя, ятрофа; Бразилии – касторовое масло. Также применяются отработанное растительное масло, животные жиры, рыбий жир и т. п.

В России (Северо-Кавказский научно-исследовательский институт механизации и электрификации сельского хозяйства, СКНИИМЭСХ) разработана технология и модульная установка «БИОДОН-1М» для производства жидкого биотоплива из растительных масел непищевого назначения с высоким значением кислотного числа (8–13 мг КОН/г). Оборудование, необходимое для выполнения технологического процесса получения биодизеля из растительных масел, размещается в стандартном 20-футовом контейнере, оборудованном приточно-вытяжной вентиляцией. Благодаря этому, установка легко транспортируется. Для монтажа и запуска установки в работу необходимы ровная площадка, подвод воды и трёхфазного тока напряжением 380 В. Установка состоит из реактора, промывочной ёмкости, ёмкости для приготовления катализатора, узла смешивания, конденсатора для охлаждения паров метанола, системы трубопроводов, шкафа управления. Реактор служит для получения из растительного масла метилового эфира жирных кислот (биодизеля) и технического глицерина методом этерификации. Затем биодизель-сырец перекачивают в промывочную ёмкость, где происходит его отмывка от омылённого продукта. Далее готовый биодизель поступает в накопительную ёмкость.

Установка позволяет перерабатывать растительные масла с последующим использованием в качестве самостоятельного топлива, а также в качестве добавки к дизельному топливу нефтяного происхождения автономно, непосредственно в условиях различных сельхозпредприятий. Для получения жидкого биотоплива в качестве исходного компонента могут быть использованы рапсовое, подсолнечное, льняное, горчичное и др. растительные масла с кислотным числом для 13 мг КОН/г. При максимальном значении кислотного числа 13 мг КОН/г растительного масла получение биотоплива, соответствующего ГОСТ Р 53605-2009, на установке «БИОДОН-1М» с применением непрерывного способа дозирования компонентов обеспечивается с предварительным подогревом масла до 50 о C. Для получения биотоплива из растительных масел с кислотным числом до 8,6 мг КОН/г предварительный нагрев растительных масел не требуется. Также разработана технология углекислой промывки для нейтрализации остатков катализатора КОН при производстве жидкого биотоплива, которая исключает возможность попадания воды в готовое биотопливо, что обеспечивает его гарантированно высокое качество для работы с двигателями внутреннего сгорания. Установка не имеет отечественных аналогов и существенно отличается от малогабаритных зарубежных установок (компоновкой, новыми техническими решениями, как-то: использованием различных видов исходного сырья, применением гидродинамического смесителя и вакуумного дозатора непрерывного действия, углекислотной промывки готового продукта и др.).

Наиболее перспективным источником сырья для производства биодизеля являются водоросли. По оценкам экспертов, с одного акра (4047 м 2 ~ 0,4 га) земли можно получить 255 литров соевого масла или 2400 литров пальмового масла. С такой же площади водной поверхности можно производить до 3570 баррелей бионефти (1 баррель = 159 литров). Основные преимущества: биодизель характеризуется хорошими смазочными свойствами, что продлевает срок жизни двигателя (это вызвано его химическим составом и содержанием в нём кислорода); при работе двигателя на биодизеле одновременно производится смазка его подвижных частей, в результате которой, как показывают испытания, достигается увеличение срока службы самого двигателя и топливного насоса в среднем на 60% (например, грузовик из Германии попал в Книгу рекордов Гиннесса, проехав более 1,25 млн. километров на биодизельном топливе со своим оригинальным двигателем); нет необходимости модернизировать двигатель; биодизель при попадании в почву не причиняет вреда растениям и животным, подвергается практически полному биологическому распаду (в почве или в воде микроорганизмы за 28 дней перерабатывают 99% биодизеля, что позволяет говорить о минимизации загрязнения окружающей среды); в сравнении с обычным дизельным топливом почти не содержит серы; температура вспышки для биодизеля превышает 100 °С, что позволяет считать биотопливо относительно безопасным веществом; производство биодизеля способствует вводу в оборот низкокачественных неиспользуемых сельскохозяйственных земель; полученный в ходе производства биодизеля жмых можно использовать в качестве компонентов корма для скота, что позволяет наиболее полно использовать сырьевую биомассу. Основной недостаток: в холодное время года необходимо подогревать топливо, идущее из топливного бака в топливный насос, или применять смеси 20% биодизеля и 80% минерального дизельного топлива; хранить технику, заправленную биодизелем более 3 месяцев, не рекомендуется – он склонен к окислению и чувствителен к воде, конденсирующейся на стенках топливных баков. Кроме того, недостатком биодизеля для климатических условий России является то, что он по своим физико-химическим свойствам соответствует летнему дизельному топливу.

Твёрдое биотопливо

Самый распространённый представитель вида – дрова. В настоящее время для производства дров или биомассы используются энергетические леса – быстрорастущих пород древесины, кустарников и трав (ива, тополь, эвкалипт, акация, сахарный тростник, кукуруза и др.). Посадку производят квадратно-гнездовым способом или в шахматном порядке. В междурядьях из деревьев часто высаживают сельскохозяйственные культуры (так называемые комбинированные посадки). Период ротации энергетического леса (от срезания до срезания) составляет 4–6 лет. В ряде стран, таких как Италия, Германия, Аргентина, Польша и др., широко практикуется создание специальных плантаций быстрорастущих пород древесины тополя и ивы. В Северной Индии посадки быстрорастущего тополя и эвкалипта занимают примерно от 50 до 60 тыс. га. Ежегодно на таких плантациях заготавливается ок. 3,7 млн. тонн древесины. Щепа и другие виды древесных отходов, топливные гранулы и брикеты и прочие виды биомассы могут представлять собой высокоэффективное, экологически чистое, возобновляемое и экономичное топливо.

Топливные гранулы – прессованные изделия из древесных отходов (опилок, щепы, коры, тонкомерной и некондиционной древесины, порубочные остатки при лесозаготовках), соломы, отходов сельского хозяйства (лузги подсолнечника, ореховой скорлупы, навоза, куриного помёта) и другой биомассы. Древесные топливные гранулы называются пеллеты, они имеют форму цилиндрических или сферических гранул диаметром 8–23 мм и длиной 10–30 мм. В настоящее время в России производство топливных гранул и брикетов экономически выгодно только при больших объёмах.

Технологический процесс производства грану л. Сырьё (опилки, кора и т. д.) поступает в дробилку, где измельчается до состояния муки. Полученная масса поступает в сушилку, из неё – в пресс-гранулятор, где древесную муку сжимают в гранулы. Сжатие во время прессовки повышает температуру материала, лигнин, содержащийся в древесине, размягчается и склеивает частицы в плотные цилиндрики. На производство одной тонны гранул уходит 4–5 м 3 древесных отходов. Готовые гранулы охлаждают, пакуют в стандартную упаковку 12–40 кг или доставляют приобретателю россыпью. Гранулы менее подвержены самовоспламенению, так как не содержат пыли и спор, которые также могут вызывать аллергическую реакцию у людей. Отличаются от обычной древесины высокой сухостью (8–12% влаги против 30–50% в дровах) и большей (примерно в полтора раза) плотностью. Эти качества обеспечивают высокую теплотворную способность по сравнению со щепой или дровами (при сгорании тонны гранул выделяется приблизительно 5 тыс. кВт·ч тепла, что в полтора раза больше, чем у обычных дров). Топливные гранулы – экологически чистое топливо с содержанием золы не более 3%.

Топливные брикеты – высушенные и брикетированные энергоносители биологического происхождения (различных отходов деревообработки, торфа, отходов сельского хозяйства и др.), экологически чистый материал, с высокой теплоотдачей. Используется как топливо, как заготовка при выработке древесного угля или кокса. В основе технологии производства топливных брикетов лежит процесс прессования шнеком отходов (шелухи подсолнечника, гречихи и т. п.) и мелко измельчённых отходов древесины (опилок) под высоким давлением при нагревании от 250 до 350°C. Получаемые топливные брикеты не включают в себя никаких связующих веществ, кроме одного натурального – лигнина, содержащегося в клетках растительных отходов. Температура, присутствующая при прессовании, способствует оплавлению поверхности брикетов, которая благодаря этому становится более прочной, что немаловажно для транспортировки брикета. Различают 3 основных типа брикетов: прямоугольные, 4- или 6-гранные брикеты (за счёт термической обработки имеют характерный чёрный или тёмно-коричневый цвет наружной поверхности). Брикеты отличаются стойкостью к механическим повреждениям, высокой влагостойкостью и калорийностью, длительным временем горения.

Биоуголь обычно получают в процессе нагревания древесины, стеблей растений или других органических материалов без доступа кислорода. Наиболее распространённый способ получения биоугля – пиролиз. В последние годы возрастает интерес к применению технологии отжига биомассы (торрефакция), которая позволяет получать биотопливные гранулы с высоким объёмным теплосодержанием. В США такая технология была применена впервые в 2008 компанией «Integro Earth Fuels».

Наво з – вид твёрдого биотоплива животного производства. Благодаря сбраживанию определённых бактерий с навозом и сушке, получают товар горения, который прессуется в блоки и используется как топливо для тепловых электростанций. Высушенный навоз – кизяк (название происходит от тюркского, казахского тезек) использовался и иногда используется теперь в качестве топлива (например, для сжигания в печи у тюркских народов для обогрева или приготовления пищи), а также для построения жилищ.

Газообразное топливо

Сырьём для производства биогаза могут служить навоз, птичий помёт, зерновая и мелассная послеспиртовая барда, пивная дробина, свекольный жом, фекальные осадки, отходы рыбного и забойного цеха (кровь, жир, кишки, каныга), трава, бытовые отходы, отходы молокозаводов (солёная и сладкая молочная сыворотка), отходы производства биодизеля (технический глицерин от производства биодизеля из рапса), отходы от производства соков (жом фруктовый, ягодный, овощной, виноградная выжимка, водоросли), отходы производства крахмала и патоки (мезга и сироп), отходы переработки картофеля, производства чипсов (очистки, шкурки, гнилые клубни, кофейная пульпа). Кроме этого, биогаз можно производить из специально выращенных энергетических культур, например из силосной кукурузы или сильфия, а также из водорослей.

Свалочный газ – одна из разновидностей биогаза. Получается на свалках из муниципальных бытовых отходов, что позволяет эффективно решить проблему замусоренности крупных городов и существенно улучшить экологическую обстановку.

Одной из главных задач биогазовых станций (помимо получения электрической и тепловой энергии) является переработка отходов, получение удобрений, улучшение экологической обстановки окружающей среды. Технология производства биогаза (метанового брожения) осуществляется в аппарате (метантенк), включающем загрузчик сырья, реактор, мешалки, газгольдер, систему смешивания воды, систему отопления, газовую систему, насосную станцию, сепаратор, приборы контроля. Биомасса (отходы или зелёная масса) периодически подаётся с помощью насосной станции или загрузчика в реактор. Реактор представляет собой подогреваемый и утеплённый резервуар (железобетон или сталь с покрытием), оборудованный мешалками. В реакторе живут полезные бактерии, питающиеся биомассой. Для поддержания жизни бактерий требуется подача корма, подогрев до 35–38° С и периодическое перемешивание. Образующийся биогаз скапливается в хранилище (газгольдере), затем проходит систему очистки и подаётся к потребителям (котёл или электрогенератор). Реактор работает без доступа воздуха, герметичен и неопасен. Для сбраживания некоторых видов сырья в чистом виде требуется особая технология, например переработка по одностадийной технологии без химических добавок, но при коферментации (смешивании) с другими видами сырья, например с навозом или силосом.

Состав и качество биогаза: 50–87% метана, 13–50% CO 2 , незначительные примеси H 2 и H 2 S. После очистки биогаза от СО 2 получается биометан – полный аналог природного газ а, отличие только в происхождении. Выход биогаза зависит от содержания сухого вещества и вида используемого сырья. Из тонны навоза крупного рогатого скота получается 50–65 м³ биогаза с содержанием метана 60%, из различных видов растений 150–500 м 3 биогаза с содержанием метана до 70%. Максимальное количество биогаза можно получить из жира – 1300 м³ с содержанием метана до 87%. Основная задача биогазовых станций – переработка отходов, получение удобрений, улучшение экологической обстановки окружающей среды и только потом получение электрической и тепловой энергии.

Биогаз используют в качестве топлива для производства электричества, тепла или пара или в качестве автомобильного топлива (например, фирмы « Volvo » и « Scania » производят автобусы с двигателями, работающими на биогазе). Биогазовые установки могут устанавливаться как очистные сооружения на фермах, птицефабриках, спиртовых заводах, сахарных заводах, мясокомбинатах. Биогазовая установка может заменить ветеринарно-санитарный завод, т. е. падаль может утилизироваться в биогаз вместо производства мясокостной муки. Среди промышленно развитых стран ведущее место в производстве и использовании биогаза по относительным показателям принадлежит Дании (до 18% в её общем энергобалансе). По абсолютным показателям по количеству средних и крупных установок ведущее место занимает Германия (8000 тыс. штук). В Западной Европе не менее половины всех птицеферм отапливаются биогазом. В Индии, Вьетнаме, Непале и других странах строят малые (односемейные) биогазовые установки. Получаемый в них газ используется для приготовления пищи. Китай на сегодняшний день является мировым лидером по внедрению технологии производства биогаза. Суммарный выпуск биогаза в стране составляет 14 млрд. м 3 /год. По мнению экспертов, при сохранении текущих темпов роста биогазовой индустрии (а это практически ежегодное удвоение рынка) Китай выйдет в мировые лидеры по производству биогаза уже к 2020 году.

Биоводород – водород, полученный из биомассы термохимическим, биохимическим или другим способом. При термохимическом методе биомассу нагревают без доступа кислорода до температуры 500–800 о C (для отходов древесины), что намного ниже температуры процесса газификации угля. В результате процесса выделяется H 2 , CO и CH 4 . Биоводород можно получать термомеханическим способом из отходов древесины, однако себестоимость данного метода пока слишком высока. В биохимическом процессе водород вырабатывают различные бактерии, например Rhodobacter sphaeroides, Enterobacter cloacae. Возможно применение различных ферментов или энзимов [от лат. fermentum – закваска; обычно белковые молекулы или их комплексы, ускоряющие (катализирующие) химические реакции в живых системах] для ускорения производства водорода из полисахаридов (крахмал, целлюлоза), содержащихся в биомассе. Процесс проходит при температуре 30° C и нормальном давлении. Водород может производить группа зелёных водорослей, например Chlamydomonas reinhardtii. Водоросли могут производить водород из морской воды или канализационных стоков.

Разрабатывается проект получения биоводорода микробиологическим путём с использованием принципов, аналогичных тем, которые используются для получения биогаза. Методом бутилового брожения сахарозы или крахмала с 1 т мелассы можно получить до 140 м 3 водорода, 1 т стеблей сладкого сорго – 50 м 3 , 1 т картофеля – 42 м 3 .

Применение водорода на транспорте и в энергетике в настоящее время обусловлено отсутствием развитой инфраструктуры, ограничиваясь созданием концептуальных моделей водородных автомобилей и техники, работающей на топливных водородных элементах. Усложняют возможность использования водорода в качестве топлива и проблемы безопасности: водород может создавать с воздухом взрывоопасную смесь – гремучий газ; сжиженный водород обладает исключительными проникающими свойствами, требуя применения особых материалов.

Синтезгаз (сигаз) – смесь газов, главными компонентами которой являются СО и Н 2 ; используется для синтеза разных химических соединений. В настоящее время синтез-газ производят конверсией природного газа либо нефтепродуктов (от лёгкого бензина – нафты до нефтяных остатков) и лишь в небольших масштабах химической переработкой древесины, а также газификацией углей. В зависимости от применяемого сырья и вида конверсии (водяным паром или нестехиометрическим количеством О 2) соотношение компонентов в газовой смеси изменяется в широких пределах. Синтез-газ получают также наряду с целевым продуктом ацетиленом при окислительном пиролизе природного газа.

Историческая справка

Первые шаги к созданию биотоплива предпринимались с появления бутанола (бутилового спирта). Тогда использовался процесс ферментации с участием бактерии Clostridium acetobutylicum, называемый также ABE-процессом по названию трёх конечных продуктов брожения – ацетона, бутанола и этанола. Огромное значение в развитии биотоплива сыграла автопромышленность. Уже в 1826 американский изобретатель С. Мори создал двигатель, топливом для которого служили спирт и скипидар. Было доказано, что растительное масло вполне можно употреблять в качестве горючего для паровых машин и пароходов. В 1876 немецкий изобретатель Н. Отто создал первый в мире четырёхтактный двигатель внутреннего сгорания, работавший на этаноле. Различными модификациями этого двигателя мы пользуемся до сих пор. Создавались и ещё более необычные проекты. Например, в 1895 Р. Дизель предложил тип дизельного мотора, основанного на использовании арахисового масла. Г. Форд был настолько уверен в будущем спиртовых автомобилей, что даже построил на Среднем Западе США спиртоперегонный завод, куда вложил немалые средства. Во время 1-й мировой войны автомобили большинства стран мира использовали этанол в качестве топлива наряду с бензином.

В 17 в. Я. Б. ван Гельмонт обнаружил, что разлагающаяся биомасса выделяет воспламеняющиеся газы. А. Вольта в 1776 пришёл к выводу о существовании зависимости между количеством разлагающейся биомассы и количеством выделяемого газа. В 1808 сэр Г. Дэви обнаружил метан в биогазе. Первая биогазовая установка была построена в Бомбее в 1859. В 1895 биогаз применялся в Великобритании для уличного освещения. В 1930, с развитием микробиологии, были обнаружены бактерии, участвующие в процессе производства биогаза. В СССР исследования проводились в 1940-х гг.; в 1948–54 была разработана и построена первая лабораторная установка. Наблюдается устойчивая тенденция использовать биогаз для решения самых разнообразных энергетических вопросов: отопления жилья, получения электричества, производства надёжного автомобильного топлива. В то же время механизмы его производства постоянно совершенствуются, разрабатываются новые, более практичные и экономные способы получения качественного топлива.

Тенденции развития мирового рынка биотоплива

Движущими факторами для распространения биотоплива являются угрозы, связанные с энергетической безопасностью, изменением климата и экономическим спадом. Распространение производства биотоплива по всему миру нацелено на увеличение доли потребления экологически чистого топлива, особенно на транспорте; снижение зависимости от импортируемой нефти для многих стран; снижение выбросов парниковых газов; развитие экономики. Биотопливо является альтернативой традиционным видам топлива, получаемым из нефти. Мировыми центрами производства биотоплива в 2014 являются США, Бразилия и Европейский Союз. Самый распространённый вид биотоплива – биоэтанол, его доля составляет 82% всего производимого в мире топлива из биологического сырья. Ведущими его производителями являются США и Бразилия. На 2-м месте находится биодизель. В Европейском Союзе сосредоточено 49% производства биодизеля. В долгосрочной перспективе постоянно растущий спрос на биотопливо со стороны наземного, воздушного и морского транспорта может сильно изменить сложившуюся ситуацию на мировом рынке энергоносителей. Использование сельскохозяйственного сырья для производства жидкого биотоплива и рост объёмов его производства обусловили спрос на сельскохозяйственную продукцию, что повлияло на цены продовольственных культур, используемых при производстве биотоплива. Объём производства биотоплива второго поколения продолжает расти, и к 2017 мировое производство биотоплива второго поколения должно составить 10 млрд. литров. Мировое производство биотоплива к 2017 должно увеличиться на 25% и составить ок. 140 млрд. литров. В Европейском Союзе основная часть производства биотоплива приходится на биодизель, производимый из семян масличных культур (рапса). По прогнозам, в странах Евросоюза будет расширяться производство биоэтанола из пшеницы и кукурузы, а также сахарной свёклы. В Бразилии, как ожидается, производство биоэтанола будет продолжать расти ускоренными темпами и достигнет к 2017 примерно 41 млрд. литров. В целом производство биоэтанола и биодизеля, согласно прогнозу, к 2017 будет возрастать быстрыми темпами и составит 125 и 25 млрд. литров соответственно. Начался быстрый рост производства биотоплива в Азии. По данным на 2014, Китай находится на третьем месте по производству биоэтанола, и ожидается, что это производство будет расти в течение следующих десяти лет более чем на 4% в год. В Индии производство биоэтанола из мелассы, согласно прогнозам, будет увеличиваться более чем на 7% в год. При этом расширяется производство биодизеля из новых культур, таких как ятрофа.

По прогнозам Мирового энергетического агентства (МЭА), нехватка нефти в 2025 будет оцениваться в 14%. По данным МЭА, если даже общий объём производства биотоплива (в том числе биоэтанола и биодизеля) к 2021 составит 220 млрд. литров, то его производство покроет лишь 7% мировой потребности в топливе. Темпы роста производства биотоплива намного отстают от темпов роста потребности в них. Происходит это из-за наличия дешёвого сырья и недостаточного финансирования. Массовое коммерческое использование биотоплива будет определяться достижением ценового равновесия с традиционными видами топлива, получаемыми из нефти. По прогнозам учёных, доля возобновляемых источников энергии к 2040 достигнет 47,7%, а биомассы – 23,8%.

При существующем уровне развития технологий производство биотоплива будет составлять небольшую часть глобальных поставок энергии, цены на энергию будут оказывать влияние на стоимость сельскохозяйственного сырья. Биотопливо может по-разному воздействовать на продовольственную безопасность – рост цен на сырьевые товары, обусловленный производством биотоплива, может нанести ущерб импортёрам продовольствия, с другой стороны, стимулировать внутреннее сельскохозяйственное производство мелкими фермерскими хозяйствами.

Формирование современных тенденций мирового рынка биотоплива сопровождается развитием противоречий субъектов на всех уровнях - от групп государств до отдельных хозяйствующих структур и потребителей. При этом экономические, экологические и социальные эффекты от внедрения биотоплива остаются предметом обширных споров. Учитывая тот факт, что стоимость биотоплива по сравнению с традиционными видами топлива несколька высока, во многих случаях более рентабельными в борьбе за уменьшение глобального потепления климата оказываются такие методы, как сокращение энергоемких видов транспорта, повышение эффективности традиционных энергоресурсов, а также охрана и восстановление лесных массивов, поэтому, современное формирование биотопливного рынка - процесс сложный и противоречивый и может стать существенным препятствием дальнейшего развития. И тем не менее рассмотрим все «ЗА» и «ПРОТИВ»

Преимущества биотоплива:

· Мобильность по сравнению с другими альтернативными источниками энергии

В настоящее время у более «радикальных» альтернативных энерготехнологий, таких как солнечная энергетика и ветроэнергетика есть одна большая проблема -- мобильность. Поскольку солнце и ветер не имеют постоянного характера, для обеспечения больших мощностей в таких энерготехнологиях приходится использовать относительно тяжелые аккумуляторные батареи (но с совершенствованием технологий эта проблема постепенно решается). С другой стороны -- биотопливо, его довольно легко транспортировать, оно обладает стабильностью и довольно большой «энергоплотностью», его можно использовать с незначительными модификациями существующих технологий и инфраструктуры.

· Снижение стоимости

В настоящее время на рынке биотопливо стоит столько же, сколько и бензин. Тем не менее в использовании биотоплива больше преимуществ, поскольку это более чистый вид топлива, он производит меньше выбросов при сжигании. Биотопливо можно адаптировать к существующим конструкциям двигателей, которое будет хорошо использоваться в любых условиях. При этом такое топливо лучше для двигателей, оно снижает общие затраты на контроль за загрязнением двигателя и, следовательно, его использование требует меньше затрат на техническое обслуживание. С увеличением спроса на биотопливо есть вероятность, что в будущем оно станет дешевле, а колонки можно будет ставить на уже имеющихся заправках.

· Адаптация к двигателям и их эксплуатация

Обладая отличными смазочными характеристиками, высокой температурой воспламенения, биодизель благоприятно действует на срок службы двигателя. Расчеты показали, что ресурс двигателя при использовании этого вида топлива может увеличиться на 60%! Кроме того, использование биодизеля не вынуждает как-то модернизировать или изменять существующие двигатели, следовательно, он более безопасен.

· Возобновляемые источники

Бензин получают из сырой нефти, которая не относится к возобновляемым ресурсам. Хотя современных запасов ископаемого топлива хватит еще на много лет, они в конечном итоге когда-то закончатся. Биотопливо изготавливается из различного сырья, такого как навоз, отходы сельскохозяйственных культур и растений, выращенных специально для топлива. Это возобновляемые ресурсы которые, вероятно, не закончатся в ближайшее время. Совершенно ясно одно: нефти на земле с каждым годом становится все меньше, а биотопливо может стать новым источником дохода для компаний производителей и новым рычагом влияния для стран.

Извлекаемые запасы ископаемых первичных энергоносителей и ежегодный прирост биомассы (в млрд. т нефтяного эквивалента)

Таблица 3

· Сокращение выбросов парниковых газов

При сжигании ископаемое топливо производит большое количество углекислого газа, который считается парниковым газом и причиной удержания солнечного тепла на планете. Сжигание угля и нефти повышает температуру и вызывает глобальное потепление. Чтобы уменьшить воздействие парниковых газов, можно использовать биотопливо. Исследования показывают, что биотопливо снижает выбросы парниковых газов до 65 процентов. Кроме того выращивание культур для биотоплива частично поглощают оксид углерода, что делает систему использования биотоплива ещё более устойчивой. Биодизель в сравнении с обычным дизельным топливом почти не содержит серы. При попадании в почву или воду он практически полностью разлагается уже через три недели.

· Экономическая безопасность для стран, не обладающих большими запасами топлива

Не каждая страна обладает большими запасами нефти. Импорт нефти оставляет существенную брешь в экономике страны. Если люди начнут склоняться в сторону использования биотоплива, то зависимость от импорта будет снижаться. Благодаря росту производства биотоплива создастся больше рабочих мест, что должно положительно отразиться на экономике страны.

Недостатки биотоплива

· Ограничения региональной пригодности

Растительное сырье для биотоплива, вероятнее всего, будет выращиваться в определенных регионах. Это связано с рядом причин, главная из которых - это то, что некоторые культуры просто лучше растут в одних местах и хуже в других.

При выборе региона для производства растительного сырья надо учитывать:

  • § Водопользование - чем меньше воды используется для выращивания сельскохозяйственной культуры, тем лучше, так как вода является ограниченным ресурсом. Особенно это критично в более засушливых местах.
  • § Инвазивность - урожай, который убивает местные растения и который трудно контролировать может поставить под угрозу биоразнообразие и серьезно повредить экосистему региона.
  • § Удобрения - питательные вещества необходимые для растений. Некоторые растения требуют меньше органических ресурсов, чем другие.
  • § Климат - в некоторых местностях просто невозможно выращивать биотопливные культуры, например, в местности с холодным или засушливым климатом.
  • · Продовольственная безопасность

Проблема с выращиванием сельскохозяйственных культур для топлива заключается в том, что они займут землю, которую можно было бы использовать для выращивания продуктов питания. В мире с постоянно растущим населением проблема наличия земли для сельскохозяйственных целей становится все более острой.

· Ограничение на изменение землепользования

При очистке земли от местной растительности для выращивания сырья удар по экологии наносится с трех сторон:

разрушается среда обитания животных и микроэкосистемы;

в процессе очистки территории от местной растительности увеличивается потребление энергии, поэтому производство получается очень энергоемким и связано с большим количеством выбросов загрязняющих веществ в процессе обработки;

растет потребление удобрений, которые будут загрязнять почву и через нее водные пути и всю окружающую среду.

Изменения в землепользовании для производства биотоплива имеют значительные недостатки, поэтому для производства биотоплива лучшим решением является использование существующей земли, но это уменьшает количество земли для продовольственных целей.

· Проблемы, связанные с выращивание монокультуры

Конечно, для получения большого количества урожая легче вырастить один вид культуры. Такая практика выращивания одной культуры называется монокультура. Примеры монокультур можно найти по всему миру, выращивание одного вида стало более распространенным в последние 20-30 лет.

Выращивание одного вида урожая изменяет окружающую среду с точки зрения доступной для вредителей пищи. Например, если урожай картофеля поедается определенным вредителем, который может мигрировать только на несколько сотен метров, а картофельные поля разделены кукурузными полями, то появление вредителей на одном картофельном поле не станет проблемой, поскольку вредители не смогут переместиться за пределы одного поля. Однако без кукурузных полей вредитель может легко уничтожить весь урожай.Использование же пестицидов при выращивании монокультуры для борьбы с вредителями неизбежно ведет к выработке у вредителя устойчивости к этим средствам. Как следствие урожай будет страдать.

При обращении к генной инженерии, когда изменяется сама культура и делается устойчивой к вредителям, отпадает необходимость использования пестицидов. Отлично! Но проблема состоит в том, что скорее всего модификации культуры не спасут абсолютно от всех вредителей, и через несколько лет производители столкнуться все с той же проблемой истребления урожая.

Ключ к здоровью культур по всему миру заключается в биоразнообразии, которое означает просто наличие большого количества различных видов растений и животных. Таким образом, если один сорт картофеля приходит в упадок, то существует другой сорт картофеля, который его может заменить. Это особенно важно, когда речь идет о продовольственных культурах.

· Ограничение в составе бензина/дизеля

В современных автомобилях биоэтанол и биодизель могут применяться лишь в составе обычного бензина/дизеля соответственно. И лишь в небольших количествах, не более 10%. Если превысить этот порог, то безвредное для экологии топливо может спокойно навредить топливной системе автомобиля и его двигателю. Высокая вязкость биодизеля не позволяет использовать его в холодное время, поэтому требуется применять смеси, состоящие на 20% из биодизеля и на 80% из солярки (марка В20).

· Конструкция двигателей

Для того, чтобы автомобиль мог ездить на чистом биотопливе, необходим доработанный двигатель и другие топливные магистрали, без этого никак. Бесконтрольное использование биотоплива может привести к поломкам двигателей автомобилей.

· Стоимость биотоплива

На сегодняшний день литр произведенного в России биоэтанола E85 составит 32-33 рубля, а 92-й на некоторых заправках стоит меньше.

· Загрязнение окружающей среды

Некоторые виды биотоплива могут привести к загрязнению окружающей среды опасными веществами, стандартов по которым на сегодняшний день не существует.

· Химический состав

Само по себе биотопливо является сильным растворителем, которое со временем может забить мелкие форсунки инжекторной системы двигателя. Практически в каждую марку биотоплива входит этанол, что делает топливо выражено гигроскопичным веществом, а растворяющаяся в нем влага может вызывать коррозию двигателя. Помимо этого, различные компоненты топлива могут оказывать негативное действие на уплотнители, прокладки и системы подачи топлива.

Биотопливо во всем развитом мире медленно, но верно замещает традиционные энергоносители, тогда как российская экономика «не видит» новых возможностей нарождающейся индустрии. Между тем при сохранении нынешних темпов роста производства биотоплива в Европе она может полностью отказаться от импорта нефти из России уже к 2017 году.

1. Биотопливо как экономический феномен. Появление в конце 19-го века двигателя внутреннего сгорания дало старт серийному производству автомобилей в начале 20-го века. Прошло немногим более 100 лет, а двигатель внутреннего сгорания по-прежнему стоит на вооружении мировых автопроизводителей. В течение века в нем были сделаны определенные усовершенствования, относящиеся к разряду малых инноваций. Например, появление в 50-х годах прошлого века инжекторных двигателей на заводах «Ferrari», увеличение количества цилиндров, клапанов, борьба за сокращение расхода топлива и т.д.

Не изменился только сам принцип работы двигателя: вот уже более 100 лет в качестве топлива активно используются продукты переработки нефти: бензин, дизельное топливо, газ. В последнее время стали разрабатывать водородный двигатель, использующий в качестве топлива воду. Однако в любом случае ничего лучше двигателя внутреннего сгорания человечество пока не придумало.

Сегодня, когда число автомобилей на дорогах и объемы потребления топлива и цены на топливо резко возросли, актуализировался вопрос о том, на каком топливе дальше ездить. Нефть и бензин соответственно дорожают. Газ, используемый в качестве топлива, является побочным продуктом переработки нефти и тоже растет в цене.

Развитый мир принял решение обратиться к прошлому опыту. Первые автомобили, в том числе и в России во время революции, ездили на спирте. Сегодня спирт (С 2 Н 5 ОН - этанол) получил модное название - биотопливо, биоэтанол; также появился биодизель.

Что касается развития индустрии биотоплива, то на рассмотрение нами выносятся следующие три вопроса:

1. Как скоро биотопливо вытеснит традиционное моторное топливо (бензин, дизель)?

2. Как внедрение биотоплива отразится на российском экспорте нефти?

3. Каковы перспективы развития производства биотоплива в России?

Несколько слов о самом биотопливе. Различается жидкое биотопливо (для двигателей внутреннего сгорания, например, этанол, метанол, биодизель), твёрдое биотопливо (дрова, солома) и газообразное (биогаз, водород) Самый древний вид биотоплива - это дрова.

3. Газообразное

1.1. Биогаз

1.2. Водород

В центре нашего внимания будет биоэтанол и биодизель. Смесь этанола с бензином обозначается буквой Е . Цифрой у буквы Е обозначается процентное содержание этанола. Например, Е85 означает смесь из 85% этанола и 15% бензина. Смеси до 20% содержания этанола могут применяться на любом автомобиле. Однако некоторые производители автомобилей ограничивают гарантию при использовании смеси с содержанием более 10% этанола. Смеси, содержащие более 20% этанола, во многих случаях требуют внесения изменения в систему зажигания автомобиля. Автопроизводители выпускают автомобили, способные работать и на бензине, и на Е85 . Такие автомобили называются «Flex-Fuel» (гибридные). Смесь биодизеля с дизельным топливом обозначается буквой B . Как и биоэтанол, в чистом виде биодизель может использоваться в автомобилях без доработки двигателей.

2. Экологические аспекты применения биотоплива. Опыт показывает, что применение биотоплива экологически безвредно. Биоэтанол как топливо нейтрален в качестве источника парниковых газов, обладает нулевым балансом диоксида углерода , поскольку при его производстве путём брожения и последующем сгорании выделяется столько же CO 2 , сколько до этого было связано из атмосферы использованными для его производства растениями.

В 2006 году применение этанола в США позволило сократить выбросы примерно на 8 млн. тонн парниковых газов (в эквиваленте СО 2), что приблизительно равно годовым выхлопам 1,21 млн. автомобилей. Однако для производства этанола в развивающихся странах активно вырубаются леса, в том числе и ливневые, под плантации соответствующих культур. Это уже наносит вред окружающей среде. Приоритет технических культур актуализирует также проблему голода в развивающихся странах.

3. Государственные программы применения этанола на транспорте. Активная работа по разработке биотоплива в мире началась еще в 1992 году. В настоящее время большинство развитых стран мира приняли соответствующие энергетические программы по использованию биотоплива (табл. 1).

Таблица 1. Государственные программы применения биоэтанола по странам мира

Требования

Бразилия

24%-я смесь этанол/бензин, 2%-е содержание этанола в дизельном топливе

производить ежегодно 28 млрд. литров этанола к 2012 году, 85%-я смесь этанол/бензин (E85)

Венесуэла

10%-я смесь с бензином

Евросоюз

2% в 2005, 5,75 % биотоплив к 2010 году (этанол + биодизель)

производить ежегодно 3 млн. тонн к 2010 году

Аргентина

5%-я смесь к 2010 году

В Бангкоке 10%-я смесь, 5%-я смесь по всей стране с 2007 года

Колумбия

10%-я смесь в больших городах к сентябрю 2005 года

10%-я смесь до конца 2005 года

5%-я смесь к 2010 году

разрешено 3%-е содержание этанола в бензине

Австралия

разрешено 10%-е содержание этанола в бензине

Новая Зеландия

5% биотоплив к 2008 году (этанол + биодизель)

Индонезия

10% биотоплив к 2010 году (этанол + биодизель)

Филиппины

5%-я смесь с бензином к 2008 году, 10 % смесь к 2010 году

Ирландия

5,75% биотоплив к 2009 году (этанол + биодизель). 10 % биотоплив к 2020 году

10% биотоплив к 2020 году

Стоит обратить внимание на то, что биотопливом не гнушаются такие нефтедобывающие страны, как Венесуэла и Канада. Наиболее активными поборниками биотоплива являются такие страны, как Бразилия, США, а также страны ЕС.

Экономическую эффективность использования биотоплива иллюстрируют данные табл.2.

Таблица 2. Себестоимость биоэтанола и цена бензина, 2006-2007 гг.

С коммерческой точки зрения производство биотоплива выглядит довольно рентабельным бизнесом. По сравнению с розничной ценой бензина себестоимость производства биоэтанола в США в 2,4 раза ниже. В ЕС разрыв между себестоимостью биотэтанола и бензина, которым он разбавляется, составляет 4 раза. Экономическая выгода очевидна.

4. Биотопливная индустрия США. Приведем некоторые данные о развитии биотопливной индустрии в США как наиболее развитой в мире:

· В 2005 году 30% бензина в США продавалось в смеси с этанолом.

· В 2006 г. в США этанол производили 110 заводов в 19 штатах. Суммарная мощность новых заводов 3,99 трлн. литров. За 2006 год было построено 15 новых заводов. В январе 2007 г. на различных стадиях строительства находилось 73 завода, 8 заводов расширяли свои мощности.

· Приоритетность развития биотопливной индустрии в США подчеркивает и адекватная амортизационная политика в отношении заводов отрасли. После 20 декабря 2006 года в амортизационной системе США для заводов, производящих биотопливо, предусмотрен специальный амортизационный вычет в размере 50% от первоначальной стоимости оборудования [www.irs.gov ]. Для российского Налогового кодекса амортизационные вычеты, особенно отраслевые, являются абсолютной новинкой.

· По сравнению с 2005 годом в 2006 году в США производство этанола возросло на 25%, по сравнению с 2000 годом - на 300%.

· В США 2,5% автомобилей имеют двигатели Flex-Fuel (2006 год). Годовой прирост автомобилей с гибридными двигателями - 1 млн. ед.

В январе 2007 года в своём ежегодном послании Конгрессу Дж.Буш предложил план «20 за 10». План предлагает сократить потребление бензина на 20% за 10 лет; 15% бензина предполагается заменить биотопливом. Таким образом, можно сделать следующий прогноз: в США через 60 лет биотопливо полностью вытеснит традиционное моторное топливо .

Таким образом, в США отмечается значительный рост объемов производства биоэтанола, увеличение числа заводов по его производству, а также позиционирование государственной программы по развитию биотопливной индустрии.

Тем не менее, приведенные выше цифры пока не дают представления о том, какова же доля потребления биотоплива. Чтобы прояснить ситуацию мы провели расчеты объемов биотоплива, в среднем приходящихся на один автомобиль США и Германии.

Таблица 3. Производство биотоплива из расчета на 1 машину: США и Германия

Данные табл.3 свидетельствуют о том, в настоящее время годовые объемы производства биоэтанола и биодизеля в США и Германии, таковы, что их хватает на одну заправку легкового автомобиля. Учитывая, что в среднем 1 машина в год потребляет 3000 литров топлива, доля биотоплива пока остается крайне малой (2-3%). Также стоит обратить внимание на асимметричную структуру производства «биодизель/биоэтанол» в США и Германии.

5. Эффект замещения традиционного топлива биотопливом. Теперь перейдем к вопросу о том, как скоро биотопливо вытеснит традиционное моторное топливо (бензин, дизель) и как его внедрение отразится на российском экспорте нефти.

Львиная доля российского экспорта нефти приходится на страны ЕС. На сегодняшний день годовой темп прироста объемов потребления биотоплива в Европе составляет 50% (табл.4). Скорее всего, в перспективе эти темпы не будут такими высокими.

Таблица 4. Потребление этанола в ЕС и динамика российского экспорта нефти

* При допущении, что при перегонке 1 литра нефти получается 0,5 литра бензина.

Учитывая темп роста объемов потребления биотоплива и замещения им бензина, производимого на нефтеперерабатывающих заводах Европы (табл.4), нами были проведены вариантные расчеты сроков, когда биотопливо сможет полностью вытеснить традиционное моторное топливо. Полученные оценки приведены в табл.5.

Таблица 5. Прогноз темпов роста потребления биотоплива в странах ЕС и периода прекращения российского экспорта нефти в Европейский союз

Исходя из полученных результатов табл.5, можно сказать, что эра традиционного бензина и дизельного топлива начинает завершаться. Вопрос «Через сколько лет будут исчерпаны мировые запасы нефти?» уже в прошлом. Вопрос формулируется уже по-другому: «Через сколько лет биотопливо полностью заменит традиционные энергоносители?».

По нашему мнению, мир находится в момент начала заката нефтяных государств . Опираясь на результаты расчетов, можно констатировать, что в распоряжении России остается не более 15 лет для того, чтобы найти источники получения доходов, отличные от экспорта нефти . Отсюда вытекает высокая актуальность построения в России инновационной экономики.

Конечно, могут звучать возражения, что российская нефть будет перенаправлена в Китай, Индию и другие страны, она будет использоваться не на НПЗ, а в промышленности, и, таким образом, status quo России сохранится. Однако не стоит серьезно обольщаться на этот счет.

6. Перспективы индустрии биотоплива в России. Потенциально эти перспективы высоки в том смысле, что в настоящее время эта отрасль находится практически на нулевом уровне. На конец 2007 года в России отсутствует ф едеральная программа развития биотоплива, не существует заводов по производству биодизеля, не существует станций, заправляющих автотранспорт биотопливом .

В реальности отечественная промышленность и национальная инновационная система пока игнорируют потенциал биотоплива и демонстрируют безразличие к неблагоприятной внутренней ценовой конъюнктуре на бензин. Нечувствительность национальной экономики к росту энергоемкости выражена в том, что переход на альтернативные источники энергии даже при высоких ценах на традиционные энергоносители не происходит. Рост цен на топливо автоматически включается производителем товаров в отпускные цены. Этот деструктивный для национальной экономики режим может существовать до тех пор, пока не иссякнет источник легких доходов в виде экспортной выручки от продажи на внешнем рынке углеводородов.

Увеличение ресурсоемкости экономики автоматически означает снижение ее эффективности. В России, нефтедобывающей стране, розничная цена бензина оказывается почти в 2 раза выше, чем в США, которые закупают нефть (табл.6). Не исключено, что США воздерживаются от разработки собственных нефтяных месторождений не в связи с желанием сохранить ее запасы, а по причине намеренного отказа от решений, не стимулирующих энергосбережение и открывающих доступ к дешевому сырью, экспорт которого может быть чреват для американской экономики «незаработанными» конъюнктурными деньгами.

Таблица 6. Сравнительные данные розничных цен на бензин в России и США на начало 2008 года

* оценка соотношения валют РФ и США по ППС проводилась с помощью the Big Mac Index (www.economist.com , 5 июля 2007 года), в соответствии с которым 1 доллар США эквивалентен 15,25 руб.

** из расчета 3 доллара США за 1 галлон (3,785 литра).

Главная причина игнорирования Россией биотоплива заключается в монополизированности топливной индустрии и отсутствии конкуренции. На рынке нет крупных экономических агентов, готовых своими активными действиями «расшевелить» ситуацию, обострить отношения на рынке. Что касается государственной политики, то она не только не поддерживает это направление, но и мешает ему. Главным препятствием является запрет на реализацию в качестве топлива смеси этанола с бензином, а также биодизеля. Кроме того, достаточно жестким выглядит Федеральный закон от 22 ноября 1995 года №171-ФЗ «О государственном регулировании производства и оборота этилового спирта, алкогольной и спиртосодержащей продукции».

В инновационной сфере от государства требуется выполнение хотя бы одного условия - не мешать, а государственная помощь необязательна. Яркий пример тому - бурно развивающийся рынок пластиковых окон. Этот рынок инновационного продукта для российских собственников жилья сформировался за несколько лет на основе зарубежных технологий производства без какого-либо участия государства и ее инновационной системы, на поддержание которой расходуются деньги налогоплательщиков.

Проводя мониторинг региональных инициатив в развитии производства биотоплива, можно отметить, что 2008 год является точкой отсчета в формировании этой отрасли в России. Например, можно отметить такие проекты, как строительство завода по производству биоэтанола в Адыгее (начало в марте 2008 г.) и строительство завода по производству биодизеля в Волгоградской области (российско-германский проект, начало в сентябре 2008 г.). Однако продукция этих предприятий не предназначена для внутреннего потребления и будет идти на экспорт.

К развитию биотоплива в России можно относиться по-разному, однако мировой вектор энергетики говорит о том, что эпоха нефти и легких денег ее экспортеров близится к завершению. Может ли Россия в перспективе поменять свой экспортный портфель: вместо нефти экспортировать биоэтанол? Теоретически да, но этот путь также бесперспективен, как и экспорт нефти.

Увеличивающийся российский экспорт нефти создает искусственный дефицит сырья для нефтеперерабатывающих заводов внутри страны. Вследствие этого растут внутренние цены на бензин. Аналогичная ситуация имеет место с зерном, являющимся сырьем для производства биотоплива. Например, в 2007 году объемы российского экспорта зерна в государства, производящие биотопливо, вызвали его искусственный дефицит внутри страны и спровоцировали рост цен на хлебобулочные изделия. Необходимо отметить, что пока потребительский негатив от роста цен амортизируется насыщенностью экономики экспортными деньгами, приток которых может в ближайшем будущем существенно уменьшиться.

Тем не менее, это не означает, что Россия должна пройти мимо биотоплива - страна должна научиться его производить, использовать, продавать и зарабатывать на нем. Это означает, что акценты энергетической и инновационной политики должны быть гибкими, а не фундаментально закрепившимися на отживающих себя направлениях. Это означает, что с развитием биотоплива необходимо на его потребление переориентировать национальную экономику.

На наш взгляд, для мировой экономики развитие биотоплива - это не шаг вперед, а шаг в сторону , временное решение проблемы дороговизны бензина. Мир нуждается не столько в альтернативном и дешевом топливе, сколько в принципиально новых технологиях перемещения в пространстве, более совершенных, чем двигатель внутреннего сгорания.

Почему проблемы, связанные с биотопливом, вызывают интерес? Ведь с точки зрения цифр биотопливо занимает весьма незначительную долю в мировом энергетическом балансе и, кроме того, даже не является лидером рынка возобновляемых источников энергии, уступая ветроэнергетике. Почему это происходит? Просто потому, что биотопливо прямо или косвенно затрагивает интересы всех и в этом узле тесно переплетены этика и политика, экономика и экология, наука и технологии, продовольствие и энергетика.

Само появление индустрии биотоплива инициировано весьма чувствительными событиями в истории ХХ века. Не менее глобальны и последствия развития этой индустрии, хотя и не всегда видимые на первый взгляд. «История ходит вокруг тихо и мелкими шагами, но потом громко хлопает за собой дверью. Важные повороты развития часто притворяются событиями проходными и незначительными. И только потом их кричащие последствия обнажают перед нами весь масштаб уже созревших перемен», - написал ярый противник биотоплива Юрий Лужков. По поводу истории мы с ним полностью согласны, обратимся же к ее страницам.

История возникновения биотоплива

На заре автомобильной эры Рудольф Дизель предрекал использование растительного масла в качестве топлива: «Использование растительного масла в качестве топлива сегодня может показаться малозначимым, однако со временем оно будет так же важно, как нефть и угольные продукты». Лауреат Нобелевской премии академик Николай Николаевич Семенов писал, что «быстрое исчерпание в будущем ресурсов обычного топлива и увеличения диоксида углерода в атмосфере настоятельно ставит перед человечеством проблему создания принципиально новой базы мировой энергетики. Времени на создание этой базы у нас мало, по-видимому, около ста лет». Таким образом, развитие индустрии биотоплива - естественный процесс истории технологического развития, подобный переходу от дров к углю, от угля к нефтепродуктам и от нефтепродуктов к газу.

Основоположником биотопливной индустрии мог стать СССР - первый опытный гидролизно-спиртовый завод в СССР был введен в эксплуатацию еще в январе 1934 года в Череповце. Однако спирт шел на получение бутадиенового каучука, а не на топливо, ибо ставилась задача избавиться от необходимости получать спирт из хлеба и картофеля, а не заменить бензин.

Первенство в получении биотоплива принадлежит Бразилии, однако решающий вклад в дело становления индустрии биотоплива сделан людьми и странами, которые даже не думали об этом. Самый большой вклад внес президент США Ричард Никсон, отменивший в 1971 году золотой стандарт (можно было напечатать только то количество денег, которое было обеспечено золотым запасом страны). Это привело к девальвации доллара при сохранении цены на нефть. Очевидно, что долго так продолжаться не могло, и 17 октября 1973 года Организация стран - экспортеров нефти (ОПЕК), а также Египет и Сирия объявили нефтяное эмбарго странам, поддержавшим Израиль в войне с ними. Вой-на войной, но все‑таки главной причиной арабских санкций была несправедливая цена на нефть. В 1974 году цена на нефть выросла с 3 до 12 долларов США за баррель (хотя в золотом эквиваленте нефть в цене не поднялась, а лишь вышла на прежний уровень). Богатые страны стали покупать нефть в СССР, а бедным пришлось искать новую энергетическую базу. В разгар ближневосточного нефтяного кризиса правительство Бразилии запустило в жизнь программу Pro Alcohol по использованию этанола в топливных целях, и за четверть века эта страна на импорте горючего сэкономила 50 миллиардов долларов.

Роль и место биотоплива в современном мире

Очевидно, что отрасль промышленности с такими оборотами уже никогда и никуда не исчезнет, что, собственно, и подтверждают темпы роста производства биотоплива. Так, В. Ф. Федоренко и соавторы приводят следующие данные по динамике производства биотоплива на ближайшую перспективу (рис. 1).

Хотя с падением цен на нефть в 2000‑х годах производство биотоплива замедлилось, с ростом цен Бразилия вернулась к его активному производству и использованию. Независимость от наличия месторождений полезных ископаемых, минимальные инвестиции и нечувствительность к политическим бурям позволяют выходить на рынок моторного биотоплива бизнес-структурам, куда менее могущественным (но более многочисленным), чем транснациональные нефтяные корпорации.

Разумеется, предприниматели страны, потребляющей бензина больше, чем кто‑либо другой, не преминули воспользоваться новой рыночной нишей. Сегодня лидером производства этанола являются США, что обеспечивает работой множество аграрных предприятий Америки. Образно говоря, топливный этанол стал пропуском в мир нефтяных магнатов для скромного фермера. Увеличился спрос на соответствующее сельскохозяйственное сырье.

Но, увы, все в мире взаимосвязано. Если для сельского хозяйства рост спроса на продукцию - это хорошо, то для потребителей пищи, особенно беднейших, биотопливо есть зло. Действительно, для производства биотоплива на одного автомобилиста требуется куда больше пашни, чем на производство еды для этого же автолюбителя. Один автомобиль отнимает хлеб у десяти человек.

Как же быть в данной ситуации? Некоторые, например Виктор Зубков, говорят, что «…когда в мире голодает почти 1 миллиард человек, занимать отечественные посевные площади под биотопливо не стоит…». Утверждение благое, но спорное. Согласиться с ним, как и с мнением другого эксперта в данной области, Дмитрия Рылько, который полагает, что «миссия России состоит в том, чтобы кормить развивающиеся страны самой дешевой пшеницей», можно, только поставив интересы граждан иностранных государств выше интересов своих крестьян.

Более серьезным политикам кажется, что миссия государства состоит в защите интересов своих граждан, в том числе экономических. Сенаторы США от «кукурузных» штатов внесли проект закона, суть которого состоит в следующем: каждая вторая заправка в Америке обязана иметь колонку Е-85 (85 процентов этанола). Однако вне зависимости от приоритетов политиков биотопливо оказывает серьезное давление на продовольственный рынок, а потому ученые и инженеры ищут способы найти баланс между энергетическими и пищевыми потребностями цивилизации.

Поколения биотоплива

Биотопливо открыло путь в мир магнатов топливного рынка аграриям, но попасть в этот волшебный мир хотят все.

С другой стороны, исследователями и разработчиками движут благородные цели защиты продовольственного рынка - достаточно вспомнить разработки советских ученых и инженеров 30‑х годов ХХ века. Как следствие, биотопливо (причем не только этанол) стали получать из всего, что было доступно в качестве сырья. Сырьевая база и спектр продуктов оказались столь разнообразны, что биотопливо необходимо было классифицировать.

Биотопливо бывает разное - под это понятие подводятся получаемые брожением водород и метан, древесные пеллеты, продукты пиролиза древесины или биомассы водорослей, но мы остановимся на жидких моторных и, в меньшей степени, котельных топливах. В конце концов, энергетический кризис разразился именно из‑за нехватки сырья для жидкого моторного топлива, и именно для его замены создана индустрия биотоплива. На сегодняшний день различают четыре поколения биотоплива (табл. 1).

На наш взгляд, углеводороды, получаемые пиролизом биомассы растений, биосинтезом или химическим синтезом из масел или биодизеля, считать биотопливом не следует, и вот почему: к биотопливу сегодня предъявляются требования прежде всего экологического плана. Его парадигмой является безопасность для природы в плане добычи сырья, получения собственно топлива, его транспортировки и хранения и, наконец, экологическая безопасность использования. Очевидно, что пиролизные и даже биосинтетические углеводороды не отвечают этим требованиям хотя бы по одному пункту - это углеводороды, и их сгорание приводит к образованию тех же по составу выхлопных газов (хотя и без продуктов сгорания серы). По сути, биобензин и продукты пиролиза биомассы отличаются от обычного бензина только сырьем - они не содержат в молекуле атомов кислорода, что придает топливу экологичность.

В основе индустрии биотоплива заложена концепция экологически безупречного топлива, безопасного на стадии производства, хранения и транспортировки, использования и утилизации. Очевидно, что без экологической составляющей смысла в альтернативных топливах нет (они дороже и часто по некоторым характеристикам хуже традиционных моторных топлив). Однако если нефть недоступна, биотопливо из высокооктановой экологичной добавки в топливо может стать основным моторным топливом.

Так, бензин и дизтопливо из синтез-газа были основным моторным топливом двух стран-изгоев: фашистской Германии и ЮАР времен апартеида.

Концепции биотоплива более всего отвечают топливный этанол (и другие спирты, полученные брожением) и биодизель (сложные эфиры жирных кислот), то есть те вещества, которые содержат в себе атомы кислорода.

Ключевыми проблемами развития биотопливной индустрии являются сырьевая база и технологии. Биотоплива первого поколения производятся с использованием простых, традиционных для отрасли технологий. Для производства биотоплива второго и последующих поколений требуются более совершенные и дорогие технологические приемы.

Биоэтанол: сырьевая база

Топливный биоэтанол получают из сахаристого сырья (сахарный тростник, сахарная свекла); крахмалистого сырья (пшеница, кукуруза, рис, картофель); целлюлозного сырья (опилки, солома, макулатура, энергетическая древесина); водорослевого сырья (ламинария, фукус); отходов промышленности (меласса, сульфитные щелока).

Сырьевая база зависит от региона: так, в Бразилии этанол производится из сахарного тростника, что обеспечивает наиболее низкую себестоимость, в США - из кукурузного крахмала, в Европе - из сахарной свеклы, картофельного и пшеничного крахмала. По производству крахмалистого сырья (как и продукции сельскохозяйственного производства) лидерство США очевидно, просто в силу климатических условий. Однако сырьевая база, способная многократно перекрыть потребности страны, не затрагивая сельскохозяйственных земель, есть фактически у каждого государства.

Так, например, по данным академика Варфоломеева (С. Д. Варфоломеев, Е. Н. Еременко, Л. П. Крылова// Успехи химии. - 79 (6). - 2010. - С. 552‑564), в России ежегодно образуется 175‑200 миллионов тонн отходов биомассы, что эквивалентно 89‑102 миллионам тонн углеводородов, а потребление бензина составляет 30 миллионов тонн в год. Однако лигноцеллюлоза (отходы сельского хозяйства и переработки древесины) даже при самом высоком уровне развития технологий ее переработки будет иметь фундаментальный недостаток - образование твердых отходов лигнина.

Содержание лигнина в древесине хвойных и лиственных пород составляет, соответственно, 23‑38 и 14‑25 процентов масс. Этот недостаток в принципе невозможно устранить, даже используя генетически модифицированные культуры, поскольку минимальное содержание лигнина ограничено требованиями к механической устойчивости растений и не может быть менее 5 процентов. Альтернативным сырьем в прибрежных регионах может быть биомасса водорослей, которые обладают большей продуктивностью, чем наземные растения, поскольку у наземных растений фотосинтез происходит только в листве (хвое), а у водорослей в фотосинтезе принимает участие вся поверхность. Даже наши арктические и дальневосточные моря богаты таким сырьем, а что говорить о тропических зонах!

Состав полисахаридов существенно отличается от крахмала, что создает определенные трудности, однако на сегодня разработан способ прямой конверсии в этанол полисахаридов бурых водорослей: Adam J. Wargacki с соавторами опубликовали в престижном журнале «Science» статью «An Engineered Microbial Platform for Direct Biofuel Production from Brown Macroalgae», где описана эта технология.

Однако водоросли обладают огромной зольностью - фактически вместо лигнина твердым отходом являются минеральные вещества. Да и технологии переработки этих субстратов весьма сложны, и крахмал с сахарным тростником являются лидерами по количеству обеспечиваемого этанола.

Биодизель

Как бы ни был хорош этанол и как бы много его ни выпускали, биодизель более привлекателен с точки зрения энергоэффективности. Действительно, даже опустив потребление энергии на нагревание, ректификацию и сосредоточившись только на биохимии процесса, мы видим, что весьма значительная часть сырья при производстве спирта просто превращается в углекислоту. С этим ничего поделать нельзя - такова природа спиртового брожения. Поэтому мы и уделим биодизелю несколько больше внимания, чем биоэтанолу.

Традиционными источниками получения биодизеля в промышленности являются такие растительные культуры, как рапс (рапсовое масло - наиболее устойчивое к низким температурам (без добавок - до -10 °С)), соя и подсолнечник. Используются также масла кукурузное, оливковое, солеросовое, хлопчатника, огуречника, микроводорослей и др.

Выбор сырья обусловлен, прежде всего, географическим положением будущего производства. Например, в Индии как источник сырья преимущественно рассматривается ятрофа; в Африке развивается производство биодизеля на пальмовом масле; в Китае в качестве сырья для получения биодизеля используют тунговое масло, а из растения Sapium sebiferum получают так называемое stillingia-масло.

Максимальное количество липидного сырья, которое может быть произведено на планете за год, - 51 миллиард литров. Из них производство 47 миллиардов литров биодизеля могло бы быть рентабельным при существующих ценах на импорт. Пять государств - Малайзия, Индонезия, Аргентина, США и Бразилия, вместе производящие 80 процентов от общего объема растительных липидов, - ведущие производители пальмовых и соевых, двух самых распространенных в мире, масличных культур. Однако наиболее экологичны и экономически обоснованы стратегии производства биодизеля из отработанных масел и жировых стоков в пищевой индустрии, а также из отходов рыболовства.

В США образуется 100 миллионов галлонов отработанных масел и жиров в год, в Канаде - 135 тысяч тонн в год, в ЕС - 0,7‑1 миллион тонн в год, в Великобритании - 200 тысяч тонн в год, большая часть которых сбрасывается в окружающую среду. Отработанные жарочные масла (ОЖМ) весьма разнородны и содержат образующиеся при жарке полимеры, димеры, окисленные триглицериды, а также диглицериды и свободные жирные кислоты (СЖК).

Помимо СЖК, ОЖМ, как правило, содержат значительное количество воды и твердых частиц. Основные свойства ОЖМ варьируются в широких пределах: плотность при 15 °C от 0,920 до 0,936 г / см3; кинематическая вязкость при 40 °C - от 27,42 до 156,00 мм2/ с; число омыления от 176,00 до 272,00 мг KOH / г и кислотное число от 0,67 до 75,92 мг КОН / г. Широкий разброс химических и физико-химических свойств создает определенные затруднения при производстве биодизеля.

Одним из новых источников липидного сырья могут стать морские биоресурсы - рыбы сорных пород. Вариантом переработки сорной рыбы может быть производство биодизеля в прибрежных районах. Преимущества такой сырьевой базы: практически круглогодичная добыча сырья, независимость от погодных условий, экологическая безопасность, сохранение пахотных земель, повышение рентабельности промыслового флота и, самое главное, - безопасность для продовольственного рынка. Однако наличие в сырье полиненасыщенных жирных кислот требует их удаления.

На практике реализован процесс получения биодизеля как отхода производства эфиров полиненасыщенных жирных кислот (у всех на слуху омега-3). Фармацевтическое сырье идет на продажу, а фракции, которые не содержат ценных веществ, - на топливо.

Вместо заключения

Существующие технологии дают возможность последовательно двигаться к освобождению от нефтяной зависимости для тех, кому нефть не по карману или же использование нефтяного топлива нецелесообразно с политической либо экологической точки зрения. Однако остается самый главный вопрос - как сделать так, чтобы, решая одни проблемы (улучшение экологической ситуации, поддержка сельского хозяйства), не оказаться лицом к лицу с проблемами продовольственными? Ни одна технология не может дать ответ на этот вопрос. Не потому, что они недостаточно разработаны, а потому, что технология - это только инструмент. Ответ противникам биотоплива лежит в плоскости организационно-управленческой, в той самой, в которой многие противники считают себя мэтрами.

На самом деле в мире существует дефицит не продуктов питания, а платежеспособного спроса на них. Ну не будут крестьяне выращивать продукцию для того, чтобы кого‑то бесплатно накормить. Продразверстка никогда не найдет поддержки аграриев. Подтверждением могут служить пустующие земли в тропиках (зачем махать мачете на плантации сахарного тростника, когда можно готовить коктейли для туристов на морском побережье?), а также регулирование производства аграрной продукции в странах ЕС.

Путь защиты продовольственного рынка мы попытались предложить на рис. 4. При производстве биотоплива образуется огромное количество отходов, которые пригодны в качестве корма для скота. При этом именно при использовании пищевого сырья (коровы не едят сульфатированный лигнин).

Любая промышленная отрасль имеет свои плюсы и минусы, достоинства и недостатки, однако умелая организация производства способна сгладить и нивелировать негативные последствия. Биотопливная отрасль просто должна быть правильно интегрирована в экономику, в этом случае давление на продовольственный рынок будет минимизировано, поскольку фактически отходом этого технологического цикла является мясная продукция!

На наш взгляд, именно в интеграции разрозненных производственных мощностей в агротехнологические биотопливные кластеры и лежит способ создания продовольственно-безопасной индустрии биотоплива. Кроме вовлечения земель в оборот, такие структуры поднимают престиж и привлекательность сельского труда (одно дело работать на ферме, а другое в топливном концерне), а адресная закупка топлива для нужд государства решает вопрос поддержки аграриев в условиях ВТО.

Александр ГАРАБАДЖИУ, д. х. н., профессор, проректор Санкт-Петербургского государственного технологического института (СПбГТИ) по научной работе
Григорий КОЗЛОВ, к. б. н., доцент кафедры технологии микробиологического синтеза СПбГТИ
Валерий ГАЛЫНКИН, д. т. н., профессор кафедры технологии микробиологического синтеза СПбГТИ